

Functions and properties VBA
Fast guide for user

Fast guide for the user · Functions and properties VBA

 Indicators
Alert GetLowest GetSystemIdentifier GSYSI SetBarRepresentation

Angle GetLowestBar GetTrueHigh SetBarStyle

CalcDate GetNthHighest GetTrueLow SetBarWidth

CalcTime GetNthLowest GetTrueRange SetHistogramBand

Close GetOrderCount GetTrueRangeCustom SetIndicatorPos

CurrentBar GetOrderDate GetVolatility SetIndicatorValue

Date GetOrderLabel GetWndBackGroundColor SetLineName

DateSubstract GetOrderPrice LimitOrder
SetWndBackgroundCol
or

GetFeedFields GetOrderSide LimitPrice ShouldTerminated

GetBackgroundColor GetOrderSymbolCode LimitVol Slope

GetBarColor GetOrderType Low StarBar

GetBarStyle GetOrderVolume MinutesToTime Time

GetBarRepresentation GetPivotDown NumberOfLines TimeEx

GetBarWidth GetPrice Open TimeToMinutes

GetExitOrder GetSwingHigh OpInt Volume

GetHighest GetSwingHighBar ReleaseDataIdentifier

GetHighestBar GetSwingLow RDI

GetHistogramBand GetSwingLowBar RegressionAngle

GetIndicatorIdentifier GII GetSymbolIdentifier RegressionSlope

GetIndicatorPos GSI SetBackgroundColor

GetIndicatorValue GIV GetSymbolInfo SetBarColor

GetLineName GetSymbolInfoEx SetBarProperties

Fast guide for the user · Functions and properties VBA

Strategies

Angle GetExitPrice GetSwingLow
ReleaseDataIdentifier
RDI

AvgBarsInTrade GetExitTime GetSwingLowBar RegressionAngle

AvgLosingTrade GetFeedFields GetSymbolIdentifier GSI RegressionSlope

AvgTrade GetHighest GetSymbolInfo Sell

AvgWinningTrade GetHighestBar GetSymbolInfoEx ShouldTerminated

BestSeries
GetIndicatorIdentifier
GII

GetSystemIdentifier GSYSI Slope

Buy
GetIndicatorValue
GIV

GetTrueHigh StandardDeviation

CalcDate GetLowest GetTrueLow StarBar

CalcTime GetLowestBar GetTrueRange Time

Close GetMarketPosition GetTrueRangeCustom TimeEx

ConfigStk GetMaxContracts GetVolatility TimeToMinutes

CurrentBar GetMaxEntries GrossLoss TodayCurrentBar

CurrentContract GetNthHighest GrossProfit TodayHigh

CurrentEntries GetNthLowest High TodayLow

Date GetOrderCount IsFirstDayBar Volume

DateSubstract GetOrderCount IsLastDayBar WorstSeries

EndOfDayTime GetOrderDate LargestLosingTrade

ExitLong GetOrderLabel LargestWinningTrade

ExitPositionsAtEndOfDay GetOrderPrice LC_Index

ExitShort GetOrderSide LimitOrder

ExitTrailingLimit GetOrderSymbolCode LimitPrice

ExitTrailingStop GetOrderType LimitVol

FilledOrders GetOrderVolume Low

GetBarsSinceEntry GetOrderVolume MarketFilledOrders

GetBarsSinceExits GetPivotDown MinutesToTime

GetConfigStk GetPivotUp NetProfit

GetDailyLosers GetPositionProfit NumberOfLosingTrades

GetDailyWinners GetPrice NumberOfTrades

GetEntryDate GetStkLength NumberOfWinningTrades

GetEntryPrice GetStkValue Open

GetEntryTime GetStkValues OpInt

GetExitDate GetSwingHigh PercentProfitable

GetExitOrder GetSwingHighBar ProfitFactor

Fast guide for the user · Functions and properties VBA

Studies

Angle GetOrderDate GetTrueRangeCustom ShouldTerminated

CalcDate GetOrderLabel GetVolatility Slope

CalcTime GetOrderPrice High StarBar

Close GetOrderSide LimitOrder Time

CurrentBar GetOrderSymbolCode LimitPrice TimeEx

Date GetOrderType LimitVol TimeToMinutes

DateSubstract GetOrderVolume Low Volume

FeedFields GetPivotDown MinutesToTime

GetExitOrder GetPivotUp Open

GetHighest GetPrice OpInt

GetHighestBar GetSwingHigh PaintBar

GetIndicatorIdentifier GII GetSwingHighBar PaintCandlestick

GetIndicatorValue GIV GetSwingLow PaintMaxMin

GetLowest GetSwingLowBar PaintSeries

GetLowestBar
GetSymbolIdentifier
GSI

ReleaseDataIdentifier

GetNthHighest GetTrueHigh RDI

GetNthLowest GetTrueLow RegressionAngle

GetOrderCount GetTrueRange RegressionSlope

Fast guide for the user · Functions and properties VBA

Alert

Description:
This function is used in indicator programming in order to trigger alerts. When certain conditions defined by
the user are fulfilled, a warning message shows up on the screen.

Syntax:
Alert (Description)

Parameters:

Name Default Description

Description “Indicator Alert” Text showing up when the alert is triggered.

The property Indicator Alert must be activated in the indicator properties editor so that the alert message
shows up on screen.

Example (VB.NET):

Me.Alert ("Warning, Average Crossover")

The following message will show up on the screen “Warning, Average Crossover”

Angle

Description:
This function returns the value of the angle between the horizontal line and the regression line formed by the
prices StartPrice and EndPrice that related the quotes with the time variable.

Syntax:
Me.Identifier.Angle(StartBar, EndBar, StartPrice, EndPrice)

Parameters:

Name Default Description

StarBar - Number of the bar where the straight line starts.

EndBar - Number of the bar where the straight line ends up.

StarPrice - Start price for the straight line.

EndPrice - End price for the straight line.

Example (VB.NET):
Let´s assume that we are willing to know, at any stage, the value in radians between the current closing price
and the closing price 30 bars ago. In this case, we should define first the start variable.

Dim angleinradians As Double = Me.Data.Angle(Bar-30,Bar,Me.Data.Close(30),Me.Data.Close(0))

The value returned by the call to this property will be assigned to this variable:

Fast guide for the user · Functions and properties VBA

AvgBarsInTrade
Description:
This function returns the average number of bars during which a trade is opened. This value will increase by
while new bars are generated and its value will depend on the bar on which this property is called.

Syntax:
AvgBarsInTrade

Parameters:

Name Default Description

- - -

Example (VB.NET):

Let´s assume that we want to know the average number of bars that our trades last. First, we must define a
variable:

Dim tradeavbars as Double

We calculate the average number of bars by trade each time a new trade is generated by asking the following
question:

If NumberOfTrades > 1 then

With this question we make sure that, at least, two trades have been generated.

tradeavbars = Me.AvgBarsInTrade

The value returned by the property will be assigned to the exit variable.

Then, we can stock the number of trades we have made under another variable previously defined:

Dim numcurrenttrades As Long = Me.NumberOfTrades

We would calculate again the average number of bars by trades only when NumberOfTrades >
NumCurrentTrades

AvgLosingTrade

Description:
This function returns the average results of the losing trades. This value will change as new bars are generated
and it will also depend on the bar on which this property is called.

Syntax:
AvgLosingTrade(Show)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

Dim avglosingtrade As Double = Me.AvgLosingTrade(SttRepresentation.ByPoints)

Assigns to the previously defined variable the average losses of all losing trades in points.

AvgTrade

Description:
This function returns the average results of the trades. This value will change by while new bars are generated
and its value will depend on the bar on which this property is called.

The returned value is of type SttRepresentation.

Syntax:
AvgTrade(Show)

Parameters:

Na
me

Default Description

Sho
w

Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

Dim avgtrade = Me.AvgTrade(SttRepresentation.Porcentual)

This function assigns to the variable the average profit of all trades in %.

AvgWinningTrade

Description:
This function returns the average result of the wining trades. This value will change by while new bars are
generated and its value will depend on the bar on which this property is called.

The returned value is of type SttRepresentation.

Fast guide for the user · Functions and properties VBA

Syntax:
AvgWinningTrade(Show)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

Dim avgwinningtrade = Me.AvgWinningTrade(SttRepresentation.ByPoints)

Assigns to the previously defined variable AvgProfitWinners the average profit of all positive trades (in points).

BestSeries

Description:
This function returns the best value reached by the total profit. This will change by while new bars are
generated and its value will depend on the bar on which this property has been called.

Syntax:
BestSeries(Show)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

Me.BestSeries(Percentage)

Returns in % the best value of the total profit reached when applying this property.

Buy

Description:
This function is used to send buy orders in stocks, futures, cfd´s, etc...

Syntax:
Buy(TraderType, Contracts, Price, Label)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

Type AtClose
Type of order to be launched (TraderType.AtClose, TraderType.AtMarket,
TraderType.AtLimit and TraderType.AtStop).

Contracts 1
Number of contracts/stocks. The numerical specifications on contracts can be
replaced by variables or by any function previously described.

Price -
Buy price. This parameter must only be indicated for the TraderType.AtStop and
TraderType.AtLimit orders. The value can be expressed by using a number, a
variable, a function or a mix of a variable and function.

Label - Label of the order in text format.

Example (VB.NET):

If (Me.GetMarketPosition() <> 1) then

Me.Buy(TraderType.AtStop, 1, Me.Data.High() +10, "C1")

End If

Sends a buy order at stop (1 contract), where the stop price is the bar high plus 10 points and the label
identifying the order “C1”.

CalcDate

Description:
Sums a certain amount of days to a certain day and returns as a result the resulting date under military format
(AAAAMMDD).

Syntax:
CalcDate(Date, Days)

Parameters:

Name Default Description

Date - Date (AAAAMMDD) to which the corresponding amount of days will be added.

Days - Amount of days to be added.

Example (VB.NET):

Dim newdate As Long = Me.CalcDate(2015110,5)

It sums 5 days to the date 10/01/2015, that under military format is 20150110 and as a consequence returns
20150115, that under date format is 15/01/2015.

Fast guide for the user · Functions and properties VBA

CalcTime

Description:
Sums an amount of minutes to a certain time and returns the result in military format (HHMM).

Syntax:
CalcTime(Time, Minutes)

Parameters:

Name Default Description

Time - Time (HHMM) to which a certain amount of minutes will be added.

Minutes - Amount of minutes to be added.

Example (VB.NET):

Dim newtime As Long = Me.CalcTime(1000,30)

Sums 30 minutes to 10:00 am (military format 1000), and thus returns 1030, that under military format is
10:30 am.

Close

Description:
This function returns the value of the close of a certain bar. The property Close can be found on any data series
or indicator.

Syntax:
Identifier.Close(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0

Number of bars backwards. The default value refers to the current bar. In this
parameter we can indicate a possible numerical value contained under the
variable or type the value directly.
It can also be specified as a function replacing the numerical value.
This parameter only allows positive values.

Example (VB.NET):

Me.Data.Close(3,Data1)

Returns the data three bars backwards of the main data source.

Fast guide for the user · Functions and properties VBA

ConfigStk

Description:
Enables to set the initial properties of the statistics that we are willing to obtain.

Syntax:
ConfigStk(Sing, Unit, Filt, CompType, Compression, BeginDate, EndDate)

Parameters:

Name Default Description

Sing ssNets
Results filter depending on whether the results are winers (StatisticSign.Wins),
losers (StatisticSign.Loss) or all (StatisticSign.Nets).

Unit suMoney
Data representation in cash (suMoney), in points (suPnts) or in percentage
(ssPorc).

Filt sfAll
Results filter by positions; in fact, depending if they are longs (sfLong) or shorts
(sfShort).

CompType sctTrades
Representation of the data grouped by trades (sctTraders), days (sctDays), weeks
(sctWeeks), months (sctMoths) or years (sctYears).

Compression 1 Compression unit.

BeginDate - Start date for the data range during which we want to extract the data.

EndDate - Final date for the data range during which we want to extract the data.

Example (VB.NET):

Me.ConfigStk(StatisticSign.Loss, StatisticUnit.Money, StatisticFilt.Short, StatisticCompType.Days,1,
cDate(”09/08/2010”), cDate(“09/08/2015”)

This function sets the properties of a strategy statistics to obtain information in cash for the losses of a single
day (only the ones where we have trades short), from August 9th 2010 to August 9th 2015.

CurrentBar

Description:
This function returns the ordinal number of the bar on which the calculations are being run (current bar).
Considering the first bar of the data series as bar number 0, the number will be increased in one unity every
evaluated bar.

When we work with two data series and one has more historical data than the other one, the calculations will
start when one of the bars of the first series coincides in time with one of the bar of the second series. This bar
will be considered as first bar (CurrentBar=1).

Syntax:
CurrentBar

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

- - -

Example (VB.NET):

Me.CurrentBar()

If the calculations were being made in the seventh bar of the data series, this function will return for example
the value 6.

CurrentContract

Description:
This function is used to know the amount of contracts or shares that are bought or sold in the current opened
position.

Syntax:
CurrentContract

Parameters:

Name Default Description

- - -

Example (VB.NET):

Me.CurrentContract

If there is no position opened, the function will return 0.

CurrentEntries

Description:
This function is used in order to know the number of different entries for an opened position. A position can
have different entries in function of the order label or the modality of matching the orders.

Syntax:
CurrentEntries

Parameters:

Name Default Description

- - -

Fast guide for the user · Functions and properties VBA

Example (VB.NET):

Me.CurrentEntries

The function returns the number of entries at the moment of applying the order. If they are no functions, it
will return the value 0.

Date

Description:
All the bars of the chart have an associated date, even if they are intraday bars. The function returns the date
on which the bar was produced. The returned format is military format, so if the bar was produced on August
10th 2000, the function will return the result 20000810.

The Date property can be found in every data series or indicator.

Syntax:
Identifier.Date(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0
Number of bars backwards. The default value refers to the current bar. We can
indicate for this parameter a numerical value included in a variable or directly
type this value. This parameter only allows positive values.

Example (VB.NET):
Me.Data.Date(3)

The function returns the date corresponding to the third bar backwards of the main data series.

DateSubstract

Description:
Returns the difference in days between two dates.

Syntax:
DateSubstract(Left, Right)

Parameters:

Name Default Description

Left - Minuend (date in military format to which we substract)

Right - Sustraend (date in military format to which we substract)

Example (VB.NET):
Dim diff As Long = Me.DateSubstract(20150110, 20150120)

Fast guide for the user · Functions and properties VBA

The function returns 10.

EndOfDayTime

Description:
Returns the close time of the current session (of main source) in military format (HHMM).

Parameters:

Name Default Description

Syntax:
Me.EndOfDayTime()

Example (VB.NET):

We want to enter to a fixed price as long as we are out of the market and this is not the last bar of the session.

 If GetMarketPosition() = 0 And Me.entryprice <> 0 Then

 If (Me.Data.Time <> Me.EndOfDayTime()) Then

 Me.Buy(TradeType.AtStop, 2, Me.entryprice * (1 + Me.factor / 100))

 Me.Sell(TradeType.AtStop, 2, Me.entryprice * (1 - Me.factor / 100))

 End If

 End If

We compare the property Time() with the property EndOfDayTime() in order to check that they are
different.

ExitLong

Description:
This function is used when we are willing to close a long position, but not to take, at the same time, a short
position. For example, if we have bought 500 shares, and the conditions to exit this trade are fulfilled, we will
use this function.

Syntax:
ExitLong Type, Contracts, Price, Label

Parameters:

Name Default Description

Type AtClose
Type of order to be launched (TraderType.AtClose, TraderType.AtMarket,
TraderType.AtLimit and TraderType.AtStop).

Contracts 1
Number of contracts/stocks. The numerical specifications on contract numbers
can be replaced by variable or any other function previously defined.

Fast guide for the user · Functions and properties VBA

Price ---
Buy price. This parameter is only used for TraderType.AtStop and
TraderType.AtLimit orders. We can replace this number by a function, a variable
or a mixed of both the function and the variable.

Label --- Order label in text format.

 If the total amount of contracts/shares (Contracts) and neither the label (Label, in case we are using several
buy orders) are not specified, the full position will be closed and we will exit the market.

 If the amount of contracts/shares is not specified, but the label is, and if we are using several buy orders, all
the contracts/shares corresponding to this label will be closed.

 If the amount of contracts and the label are specified, the amount of contract shares for the order which
label has been specified will be closed.

 If the number of contracts/shares is specified, but not the label, and presuming that several positions are
opened, the amount of contracts/shares specified in the last order will be closed.

Example (VB.NET):
Me.ExitLong(TraderType.AtStop, 1, Me.GetEntryPrice -10, "C1")

The position (1 contract), if the order is labelled as “C1”, will be closed with a sell order at stop at the entry
price minus 10 points. In this case, we are talking about a stop loss order.

Me.ExitLong(TraderType.AtLimit, 1, Me.GetEntryPrice+30)

The positions (1 contract) will be closed with a sell limit order at the entry price plus 30 points. In this case, we
are talking about a target profit order.

ExitPositionAtEndOfDay

Description:
If the property is established to True, then all trades of the strategy will be liquidated at the close of each
session.

Attention. This possibility is admitted for all cases of strategy development for backtesting. Nevertherless, if
you want to activate the trading of a strategy in real time that use it, it is necessary to contact first your broker
to confirm if the method is possible within this broker.

If you want to use this property, we recommend declaring it from the method OnInitCalculate().

Syntax:

Me.ExitPositionsAtEndOfDay() = True/False

Parameters:

Name Default Description

- - -

Example (VB.NET):

Fast guide for the user · Functions and properties VBA

We want to close all trades at the close of the session according to a parameter. First, we declare the
parameter:

 <Parameter(Name:="EndOfDay", DefaultValue:=1, MinValue:=0, MaxValue:=1, Step:=1)>

 Private endofday As Integer

Next, we establish the property to true or false according to the parameter:

 Public Overrides Sub OnInitCalculate()

 Me.ExitPositionsAtEndOfDay = (Me.endofday = 1)

 End Sub

ExitShort

Description:
This function is used to close a short position without opening a long position. For example, if we have sold 5
future contracts, and the necessary conditions are fulfilled to liquidate the position, we shall use this function.

Syntax:
ExitShort(TraderType, Contracts, Price, Label)

Parameters:

Name Default Description

Type AtClose
Type of order to be launched (TraderType.AtClose, TraderType.AtMarket,
TraderType.AtLimit and TraderType.AtStop).

Contracts 1
Number of contracts/stocks. The numercial specifications on contracts can be
replaced by a variable or by any function previously defined.

Price ---
Buy price. This parameter must only be indicated for TraderType.AtStop and
TraderType.AtLimit orders. The value can be expressed by a number, a variable, a
function or by a mix of variable and function.

Label --- Label of the order in text format.

 If nor the number of contracts/stocks (Contracts) neither the label (Label, if we are using several sell orders)
are specified, the full position will be closed and we will exit the market.

 If the number of stokcs is not specified, but the label is (assuming that we are using several sell orders), all
the contracts/stocks corresponding to the order with this label will be closed.

 If the number of contracts and the label are specified then this number of contracts/stocks of the order
with the specified label will be closed.

 If the number of contracts/stocks is specified, but the label is not, and if there are several opened positions,
the number of contracts specified in the last order will be closed.

Example (VB.NET):
Me.ExitShort(TraderType.AtStop, 1, Me.Data.High() +10, "ES1")

The position (1 contract) of the order labelled as “ES1”, will be closed with a buy stop order at the price of the
high of the bar plus 10 points. In this case we are limiting losses with a protection stop.

Fast guide for the user · Functions and properties VBA

ExitTrailingLimit

Description:
This method enables to use a trailing limit order for a concrete opened position. This function is a novelty at
Visual Chart 6 and facilitates the work on the design of dynamic exit orders.

The trailing limit order consists of the following (in case of long opened position):

 Stores the highest value reached since the position was opened.
 Calculates the exit price based on said high according to the following function:
o limitPrice = High + (High x percentage x 0.01)
 If it is at the beginning of the trade, it sends an ExitLong limit order at the calculated price.
 For the rest of the bars, if the resulting value is lower than the last calculated value, the price of the exit
order will be replaced and modified.

Syntax:

Me.ExitTrailingLimit(percentage)

Parameters:

Name Default Description

Percentage -
Percentage of margin that will be applied to the most extreme value to
position the limit exit order.

Example (VB.NET):
 If GetMarketPosition() <> 0 Then

 Me.ExitTrailingLimit(pcttrail)

 End If

Each time there is an opened position, the TrailingLimit will be activated with a percentage depending of the
pcttrail parameter.

ExitTrailingStop

Description:
This method enables to use a trailing stop order for a concrete opened position. This function is a novelty at
Visual Chart 6 and facilitates the work on the design of dynamic exit orders.

The trailing stop order consists of the following (in case of long opened position):

 Stores the highest value reached since the position was opened.
 Calculates the exit price based on said high according to the following function:
o stopPrice = High + (High x percentage x 0.01)
 If it is at the beginning of the trade, it sends an ExitLong stop order at the calculated price.
 For the rest of the bars, if the resulting value is higher than the last calculated value, the price of the exit
order will be replaced and modified.

Fast guide for the user · Functions and properties VBA

Syntax:

Me.ExitTrailingStop(percentage)

Parameters:

Name Default Description

Percentage -
Percentage of margin that will be applied to the most extreme
value to position the stop exit order.

Example (VB.NET):
 If GetMarketPosition() <> 0 Then

 Me.ExitTrailingStop(pcttrail)

 End If

Each time there is an opened position, the TrailingStop will be activated with a percentage depending of the
pcttrail parameter.

FeedFields

Description:
This function determines the information fields to which we want to obtain access in real time using the
method with the same name.

Syntax:
.FeedFields(Field)

Parameters:

Name Default Description

Field FFLast

FFAskSize Amount of offered contracts
FFBidSize Amount of requested contracts
FFBuy1 Price offered in the first buying position
FFBuyAgency Buying Agency
FFBuyOrders Selling Agency
FFDate Date
FFDecimals Decimals
FFDescription Symbol description
FFDiff Difference
FFDiff_P Difference %
FFExpiry_Date Expiry date
FFHigh High
FFISIN ISIN code
FFLast Last price
FFLastVol Last volume
FFLow Low
FFMinimumMov Tick
FFNumTrades Number of trades
FFOpen Open

Fast guide for the user · Functions and properties VBA

FFOpenInterest Open Interest
FFPrevious Previous

FFSell1 Price offered in the first selling position
FFSellAgency Selling Agency
FFSellOrders Buy orders

FFSubMarket Submarket the symbol belongs to

FFTime Time
FFVolume Volume

Example (VB.NET):
If we want to obtain the last closed trade, we should previously define an exit variable:

Dim LastTrade as Double

The value returned by this property will be ascribed to this variable:

LastTrade = .FeedFields(FFLast)

FilledOrders

Description:
The property FilledOrders enables to find out if, over a certain bar, buy or sell active orders associated to a
certain label have been filled. If so, the function will return 1, if not 0.

Syntax:
FilledOrders(Label, Side, BarsAgo)

Parameters:

Name Default Description

Label - Label associated to the order that we are willing to check.

Side - Position of the order to be checked. (0 buy position; 1 sell position)

BarsAgo 0
Bar from which we are willing to obtain the date. The default value is the current
bar.

Example 1 (VB.NET):
Me.FilledOrders(“C1”, 0, 10)
If a buy order labelled as “C1” has been filled 10 bars backwards, the function will return 1.

Example 2 (VB.NET):
In a strategy, we launch three orders at stop, two buy orders with the labels A und B and a sell order with the
label C.

In the following bar, we are willing to know how many orders have been executed.

To do so, we proceed as follows:

We define a buy orders counter and a sell orders counter.

Dim buycounter As Integer = 0

Fast guide for the user · Functions and properties VBA

Dim sellcounter As Integer = 0
If Me.FilledOrders(“A”,0 , 0) =1 then
 buycounter= 1
End If

If Me.FilledOrders(“B”,0 , 0) = 1 then
 buycounter=buycounter+1
End If

If Me.FilledOrders(“C”,1 , 0) =1 then
 sellcounter= 1
End If

GetBackGroundColor

Description:

This function returns the background color of a certain bar.

Syntax:

GetBackGrounColor (BarsAgo)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Example (VB.NET):
Me.GetBackGroundColor(0)

Returns the value of the window background color for the current bar.

GetBarColor

Description:

This function returns the color of the data line for a certain bar.

Syntax:

GetBarColor (BarsAgo, Line)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards, 0 corresponds to the current bar.

Line - Line in the current bar whose color we are willing to obtain.

Example (VB.NET):
Me.GetBarColor(1,3)

Returns the color in the previous bar for the data line number 3.

Fast guide for the user · Functions and properties VBA

GetBarsSinceEntry

Description:
This function is used to find out the number of bars completed since a certain position was opened (long or
short). If no position has been opened, it will return 0 as a result.

Syntax:
GetBarsSinceEntry(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards. The default value refers to the current position.

Example (VB.NET):
Me.GetBarsSinceEntry (0)

Returns the number of bars formed since the currrent position was opened.

GetBarsSinceExit

Description:
This function is used to know the number of bars completed since a certain position was opened. If we have
not exit any position, the function returns the value 0.

Syntax:
GetBarsSinceExit(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards. The default value refers to the current positions.

Example (VB.NET):
Me.GetBarsSinceExit (1)

Returns the number of bars formed since the close of the previous trade.

GetBarStyle

Description:
This function returns the style of the line used in a certain bar.

Syntax:
GetBarStyle(BarsAgo, Line)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Fast guide for the user · Functions and properties VBA

Line -
Identifies the line to which the bar from which we are willing to obtain the style
belongs.

Example (VB.NET):
Me.GetBarStyle (0,1)

It returns the style of the line in the current bar for line number 1. The values that can be returned by the
function are:

 LineStyle.Solid: Full line.
 LineStyle.Dash: Dashed line.
 LineStyle.Dot: Dotted line.
 LineStyle.DashDot: Dashed line with point.
 LineStyle.DashDotDot: Dashed line with two points.

GetBarRepresentation

Description:
This function returns the representation type used in the indicator for a line in a certain bar. The returned
value is of the sort IndicatorRepresentation.

Syntax:
GetBarsSinceExit(BarsAgo, Line)

Parameter:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line -
Identifies the line to which the bar from which we are willing to obtain
the style belongs.

Example (VB.NET):

If Me.GetBarRepresentation(10, 1) = IndicatorRepresentation.Lineal The

 MsgBox("Line 1 was represented with a line 10 bars backwards.")

End If

The values that can be returned by the function are::

 IndicatorRepresentation.Bars: Representation using bars.
 IndicatorRepresentation.Candlestic: Representation using candles.
 IndicatorRepresentation.DottedLine: Representation using dotted line.
 IndicatorRepresentation.FilledHistogram: Representation using filled histogram.
 IndicatorRepresentation.Histogram: Representation using histogram.
 IndicatorRepresentation.Lineal: Linear.
 IndicatorRepresentation.Parabolic: Representation using parabolic lines.
 IndicatorRepresentation.Volume: Representation using volume.

Fast guide for the user · Functions and properties VBA

GetBarWidth

Description:
Returns the width of a certain line for the indicated bar.

Syntax:
GetBarWidth(BarsAgo, Line)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the line to which the bar from which we are willing to obtain the width
belongs.

Example (VB.NET):
Me.GetBarWidth(0,1)

The function returns the width (1,2,…) of line 1 in the current bar.

GetConfigStk

Description:
This procedure returns the initial properties of the statistics in current use.

Syntax:
GetConfigStk(Sing, Unit, Filt, CompType,Compressión, BeginDate, EndDate)

Parameters:

Name Default Description

Sing -
Result filter depending of the trade results; winners (StatisticSign.Wins) or losers
(StatisticSign.Loss).

Unit -
Representation of the figures in cash (StatisticUnit.Money), in points
(StatisticUnit.Pnts) or in percentage (StatisticUnit.Portc).

Filt -
Result filter by position, long (StatisticFilt.Long), short (StatisticFilt.Short) or all
(StatisticFilt.All).

CompType -
Representation of the figures grouped by trades (StatisticCompType.Trades),
days (StatisticCompType.Days), weeks (StatisticCompType.Weeks), months
(StatisticCompType.Moths) or years (StatisticCompType.Years).

Compressión - Compression units.

BeginDate - Start date for the statistics time interval.

EndDate - End date for the statistics time interval.

Example (VB.NET):
Lest´s suppose that we have defined the following start variables:

Fast guide for the user · Functions and properties VBA

Dim Sign As StatisticSign
Dim Unit As StatisticUnit
Dim Filter As StatisticFilt
Dim TComp As StatisticCompType
Dim Compression As Long
Dim DateStart As Date
Dim DateEnd As Date

When calling the property GetConfigStk:

GetConfigStk(Sign, Unit, Filter, TComp, Compression, DateStart , DateEnd)

Each of the variables previously defined will be filled with the figures returned by GetConfigStk.

Following with the example given for the property ConfigStk, when using GetConfigStk, we will get the
following information as a result:

Sign = ssLoss = 2
Unit = suMoney = 0

Filter = sfShort = 2
Tcomp = sctDays = 3

Compression = 1
DateStart = 09/08/2009

DateEnd = 09/08/2010

GetDailyLosers

Description:
This function returns the amount of losing trades between two given dates. It will be always compared with
the date of the trade start.

Syntax:
GetDailyLosers(FromDate, ToDate)

Parameters:

Name Default Description

FromDate - Start date for the interval to be analyzed.

ToDate -1
End date for the interval to be analyzed. If no value is specified or -1 is assigned,
it means that the end date of the interval will be the current date.

Example (VB.NET):

If we want to know the number of losing trades between two dates 10/06/2015 and 10/09/2015.

First, we define the variable to which we will assign the number of losing trades and we assing the value
returned by this function as follows:

Dim Losingtrades As Long = Me.GetDailyLosers(“20150610”,”20150910”)

Fast guide for the user · Functions and properties VBA

GetDailyWinners

Description:
This function returns the amount of winning trades between two given dates. It will be always compared with
the date of the trade start.

Syntax:
GetDailyWinners(FromDate, ToDate)

Parameters:

Name Default Description

FromDate - Start date for the interval to be analyzed.

ToDate -1
End date for the interval to be analyzed. If no value is specified or -1 is assigned,
it means that the end date of the interval will be the current date.

Example (VB.NET):
If we want to know the number of winning trades between two dates 10/06/2015 and 10/09/2015.
First, we define the variable to which we will assign the number of winning trades and we assing the value
returned by this function as follows:

Dim WinningTrades As Long = Me.GetDailyWinners(“20150610”,”20150910”)

GetEntryDate

Description:
This function is used to find out the date on which a position has been opened. The format of the returned
date is military (AAAAMMDD). Therefore, if the position was opened on June 25th, the indicated function will
return the numerical value 20100625. If no position has been started, it will return 0.

Syntax:
GetEntryDate(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards. The default value refers to the current position.

Examples (VB.NET):
Me.GetEntryDate(0) The function returns the date on which the current position was opened.
Me.GetEntryDate(5) The function returns the date on which the fifth position ago was opened.

GetEntryPrice

Description:
This function is used to find out the price at which a position has been opened.

Fast guide for the user · Functions and properties VBA

It returns the entry price of the position indicated in the parameter EntryAgo. If no position has been found, it
will return 0.

Syntax:
GetEntryPrice(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0
Number of positions backwards, that we are willing to check. The default value
refers to the current position.

Examples (VB.NET):
Me.GetEntryPrice(0) The function returns the entry price of the current position.
Me.GetEntryPrice(5) The function returns the entry price of the trade 5 trades ago.

GetEntryTime

Description:
This function is used to know the time at which a position has been opened. This information will be returned
under 24 hours military format (HHMM), so that, if the time is 5:35 pm it will be considered as the numerical
format 1735. If no position has been started, the function will return the value 0.

Syntax:
GetEntryTime(EntryAgo)

Parameters:

Name Default Description

EntryAgo
0

Number of positions backwards that we are willing to check. The default value
refers to the current position.

Examples (VB.NET):
Me.GetEntryTime(0) The function returns the entry time of the current position.
Me.GetEntryTime(4) The function returns the entry time four positions backwards.

GetExitDate

Description:
This function is used to know the data on which a position has been closed. The format on which the date is
returned is military format (AAAAMMDD). If the position was closed on June 25th, the indicated function will
return the numerical value 20100625. If the position has not been closed yet, the function will return 0.

Syntax:
GetExitDate(EntryAgo)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards. The default value refers to the current position.

Notes:
We must take into account that, at all effects, the last opened trade is considered to be closed in the current
bar (bar on which the calculations are being made). Thus, if the value 0 is indicated in the parameter EntryAgo,
this function will return the date of the current bar.

Therefore, if only the functions Buy and Sell are used in the strategy, the value 1 applied to the parameter
EntryAgo will return the date of the last closed operation before the current one. While the value 0 will always
return the date of the current bar, indicating that there is currently a position opened.

But if we also use the functions ExitLong and ExitShort, the case can occur where there is no position opened
in the current bar. In these cases, the value 0 applied to the parameter EntryAgo will not return anything, as
there is no position opened, while the value 1 will return the data when the last position was closed.

Example (VB.NET):
Me.GetExitDate(3)

The function will return the exit date three trades backwards.

GetExitOrder

Description:
Specifies if the nth order given over a certain bar for a Data (System type) is an exit order or not. If it has been
an exit order, the function returns True. On the other hand, if the order has been an entry order the function
will return False.

Therefore, it is necessary to declare first a strategy type object.

Syntax:
Me.Strategy.GetExitOrder(BarsAgo, NumOrder)

Parameters:

Name Default Description

BarsAgo
0

Bar from which we are willing to obtain the data. The default value refers to the
current bar.

NumOrder
-

Position of the order from which we are willing to obtain the information. The
position list starts at 0.

Example (VB.NET):

We want to close the strategy trades when the strategy AdxBandSystem 02 closes.

First, we have to declare the ADXBANDSYS02 type object:

 Dim adxbdsysdata As ADXBANDSYS02

Next, we create the object from the method OnInitCalculate:

Fast guide for the user · Functions and properties VBA

 Me.adxbdsysdata = New ADXBANDSYS02(Me.Data)

From OnCalculateBar() we add the following code:

 If (Me.adxbdsysdata.GetExitOrder(0, 0)) Then

 Me.ExitLong(TradeType.AtMarket, 1)

 Me.ExitShort(TradeType.AtMarket, 1)

 End If

GetExitPrice

Description:
This function is used to know the price at which a position has been closed. If no position has been closed, it
will return 0.

Syntax:
GetExitPrice(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards that we are willing to check. The default value refers
to the current position.

It is important to take into account the observations of the function GetExitDate.

Example (VB.NET):
Me.GetExitPrice(5) The function returns the exit price 5 trades ago.

GetExitTime

Description:
This function is used to know the time of a position closing. The time will be returned under 24 hours military
format (HHMM), so that if the time is 5:35 pm we will consider it as the numerical value 1735. If no position
has been closed, the function will return the value 0.

Syntax:
GetExitTime(EntryAgo)

Parameters:

Name Default Description

EntryAgo
0

Number of positions backwards that we are willing to check. The default value
refers to the current position.

Example (VB.NET):
Me.GetExitTime(3) The function returns the exit time three trades backwards.
It is very important to take into account the observations of the function GetExitDate.

Fast guide for the user · Functions and properties VBA

GetFeedFields

Description:

This function determines the information fields to which we want to obtain access in real time using the
method with the same name.

Syntax:
GetFeedFields(Field)

Parameters:

Name Default Description

Field FFLast

FeedFields.AskSize Amount of offered contracts
FeedFields.BidSize Amount of requested contracts
FeedFields.Buy1 Price offered in the first buying position
FeedFields.BuyAgency Buying Agency
FeedFields.BuyOrders Selling Agency
FeedFields.Date Date
FeedFields.Decimals Decimals
FeedFields.Description Symbol description
FeedFields.Diff Difference
FeedFields.Diff_P Difference %
FeedFields.Expiry_Date Expiry date
FeedFields.High High
FeedFields.ISIN ISIN code
FeedFields.Last Last price
FeedFields.LastVol Last volume
FeedFields.Low Low
FeedFields.MinimumMov Tick
FeedFields.NumTrades Number of trades
FeedFields.Open Open
FeedFields.OpenInterest Open interest
FeedFields.Previous Previous
FeedFields.Sell1 Price offered in the first selling position
FeedFields.SellAgency Selling Agency
FeedFields.SellOrders Sell orders
FeedFields.SubMarket Submarket the symbol belongs to
FeedFields.Time Time
FeedFields.Volume Volume

Example (VB.NET):
If we want to obtain the last closed trade, we should previously define an exit variable to which we will ascribe
the value returned by this property:

Dim lasttrade as Double = Me.GetFeedFields(FeedFields.Last)

Fast guide for the user · Functions and properties VBA

GetHighest

Description:
This function is used to obtain the highest value of the last n bars.

Syntax:
Me.Identifier.GetHighest(Type.Price, Length)

Parameters:

Name Default Description

TPrice PriceClose

Field of the bar we want to refer to. To do so, we must indicate in this field any of
the following values:

PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

If this function is calculated with an indicator as data source, we will use as
parameter in TPrice the value PriceClose, referring to the close of the identifier
data series. On the other hand, if we indicated PriceHigh or any other, it would
not make any difference as it would always return the same value.

Length 1
Number of bars backwards to be considered. Any numerical type variable can be
used to replace a number.

Examples (VB.NET):
Me.Data.GetHighest(Price.High, 10)

The function returns the numerical value of the highest high of the last 10 bars and for the indicated data
series (Data).

We create the object AvSimple from OnInitCalculate.

Me.avsimpledata = New AvSimple(Me.Data)

So that

Me.avsimpledata.GetHighest(Price.Close, 100)

The function returns the highest value of the moving average of the last 100 bars.

GetHighestBar

Description:
This function returns the distance in bars of the highest value of the last n bars (included the current bar) of a
determined source object. The function is included in every class of type source, such as a data series or an
indicator.

The distance in bars will be calculated regarding the current bar. As a result, if the highest price is in the
current bar, the returned value will be 0. If it is in the 15th bar backwards, the returned value will be 15, and so
forth and so on.

Fast guide for the user · Functions and properties VBA

Syntax:
Me.Identifier.GetHighestBar (Type.Price, Length)

Parameters:

Name Default Description

Tprice PriceClose

Field of the bar we want to refer to. To do so, we must indicate in this field any of
the following values:

PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

If this function is calculated with an indicator as data source, we will use as
parameter in TPrice the value PriceClose, referring to the close of the identifier
data series. On the other hand, if we indicated PriceHigh or any other it would
not make any difference as it would always return the same value.

Length 2
Number of bars backwards to be considered. The default value 2 will return 0 or
1 (depending on the High). Any numerical variable can be used instead of a
number.

Example (VB.NET):
Me.Data.GetHighestBar(Price.Low, 20)

The function returns the bar number (backwards), where the highest low of the last 20 bars of the indicated
data series (Data1) is obtained.

GetHistogramBand

Description:
This function returns the band line number ascribed to the line specified in the parameter with the same
name.

Syntax:
GetHistogramBand(Line)

Parameters:

Name Default Description

Line - Identifies the data line whose band line number we are willing to know.

Example (VB.NET):
Imagine that we want to create an indicator and we are representing it the following way:

Me.SetIndicatorValue(x, 1)
Me.SetIndicatorValue(50, 2)
Me.SetBarRepresentation(0,1,irHistogram)
Me.SetHistogramBand(1, 2)

If we define a start variable to which we can assign the value returned by the function:

Fast guide for the user · Functions and properties VBA

Dim mybandline as Integer = Me.GetHistogramBand(1)

The function will return the value 2 (the band line).

GetIndicatorIdentifier - GII

Description:
This function is used to create the data series corresponding to any indicator and to obtain an identifier of this
series. To do so, we need to declare first a variable of DataIdentifier type.
Once the variable is defined we will always assign to it the value of the function GetIndicatorIdentifier in order
to create the indicator data series and to obtain an identifier of the same indicator.

The identifier of the indicator must be obtained from the procedure OnInitCalculate.
Later on, in order to obtain the value of an indicator we must use the function GetIndicatorValue and indicate
in the parameter Data the variable on which we have saved the value of the correponding indicator.
The identifier obtained by this function can be used on any VBA function on which a Data is required (Data
series on which the different functions are calculated).

Syntax:
GetIndicatorIdentifier(Name, ParentDataIdentifier, ParamArray())

We can also use the short method GII:

GII(Name, ParentDataIdentifier, ParamArray())

Parameters:

Name Default Description

Name - Indicator code.

ParentDataIdentifier -

Identifier of the series on which the indicator is calculated.
If we set this parameter as data, we will be calculating the indicator on
the data or series on which the strategy is being calculated.
If we are willing to obtain the identifier of an indicator being calculated on
another indicator we shall indicate within this parameter the identifier of
the indicator we are willing to use as calculation.

Fast guide for the user · Functions and properties VBA

ParamArray -

First parameter specific of the indicator. It represents a group of
parameters which number is not specified, as each of the indicators has a
variable number (a moving average has 2, while an RSI has 3).
The order on which the parameters must be specified is the same as these
indicators figure out on the dialog box showing up when we are ready to
plot the indicator into a chart.
If the parameter is Price type, it refers to one of the fields of the bar
(Close, Open, etc.), as it would be the case of a moving average as its
second parameter is the data source.
In these cases we must specify the field of the bar on which we are going
to calculate the indicator. We shall indicate any of the following constants
equivalent to those fields:
PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

ParamArray - Second parameter specific of the indicator.

... - ...

n-th ParamArray - n-th parameter specific to the indicator.

Example (VB.NET):

We declare an object DataIdentifier:

Dim rsidata As DataIdentifier

We create the object from OnInitCalculate:

Me.rsidata = Me.GetIndicatorIdentifier(Indicators.RSI, DataIdentifier.Data1, 14, 70, 30)

The source returns the indicator identifier RSI (14,70 and 30 are the indicator parameters).

Visual Chart 6 novelties:

Visual Chart 6 wants to get the most of the project design using object-oriented programming languages.

As a result, we will see that we can create objects of equivalent classes to the indicator that we want to add.

So, we can define objects of AvSimple, RSI or MACD type. Every created indicator, public as well as the
indicators created with your user, adds a new class of the same type. In this way, it is lighter to add indicators
to a project because it is not necessary to use the method GetIndicatorIdentifier.

Example (VB.NET):

Fast guide for the user · Functions and properties VBA

The previously created object rsidata can also be declared as follows:

Dim rsidata As RSI

Then we create it as follows:

Me.rsidata = New RSI(Me.Data)

GetIndicatorPos

Description:

This function obtains the trend of the indicator within a certain bar.

Syntax:
GetIndicatorPos(BarsAgo, Line)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards.

Line - Identifies the line, the bar we are willing to obtain the trend from belongs to.

Example (VB.NET):
If Me.GetIndicatorPos(0, 1) = IndicatorPosition.Bull Then

 MsgBox(“Bullish trend indicator.”)

End If

The values that can be returned by this function are the following:

 IndicatorPosition.Bull

 IndicatorPosition.Bear

 IndicatorPosition.Neutral

GetIndicatorValue - GIV

This function is used to obtain the value of an indicator. To do so, we must have previously determined the
identifier of the indicator in the procedure InitCalculate via the function GetIndicatorIdentifier.

Syntax:
GetIndicatorValue(Identifier, BarsAgo, LineNumber)

We can also use the abbreviation GIV

.GIV(Identifier, BarsAgo,LineNumber)

Parameters:

Name Default Description

Identifier - Identifier of the indicator.

BarsAgo 0
Represents the number of bars backwards we are referring to in order to obtain the
value of the indicator.
If we are using a moving average, a value equal to 0 for this parameter, will force

Fast guide for the user · Functions and properties VBA

the function to return the value of the average in the current bar.
A value equal to 1 will return the value of the average a bar ago and so forth and so
on.

LineNumber 1
Line of the indicator to be obtained. Some indicators have more than one data line.
In these cases, if we give to this parameter a value 1, it will return a value referring
to the first data line, 2 for the second and so forth and so on.

Example (VB.NET):
We declare an object DataIdentifier as follows:

Dim rsidata As DataIdentifier

We create the object from OnInitCalculate:

Me.rsidata = Me.GetIndicatorIdentifier(Indicators.RSI, DataIdentifier.Data1, 14, 70, 30)

The following line:

Me.GetIndicatorValue(Me.rsidata, 0, 1)

returns the value of the first indicator line in the current bar.

Visual Chart 6 novelties:

Visual Chart 6 wants to get the most of the project design using object-oriented programming languages.

As a result, we will see that we can create objects of equivalent classes to the indicator that we want to add.

Objects of Indicator type include a property called Value that replaces the previously explained function

GetIndicatorValue.

Syntax:
Me.Indicator.Value(BarsAgo, Line)

Example (VB.NET):

We create a RSI type object:

Me.rsidata = New RSI(Me.Data)

We extract the value of the line 1 of the indicator in the current bar from OnCalculateBar:

 Me.rsidata.Value(0, 1)

GetLineName

Description:

This function returns the Name of the indicated data line.

Syntax:

GetLineName(Line)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

Line 1 Identifies the line from which we are willing to obtain the Name.

Example (VB.NET):
Me.GetLineName(1)

If we were programming an indicator and had assigned to line number 2 the Name “UpperBand”, the function
.GetLineName(1) will return “UpperBand”.

GetLowest

Description:
This function is used to obtain the lowest value of the last n bars of a data series.

Syntax:
Me.Identifier.GetLowest (TPrice, Length)

Parameters:

Name Default Description

TPrice PriceClose

Field of the bar to which we want to refer. To do so, we must indicate any
of the following values:
PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume
If this function is calculated using an indicator as data source, we will use
as parameter in TPrice the value PriceClose, that refers to the data series
of the identifier. If we indicated PriceHigh or any other, we still get the
same value as return.

Length 1
Number of bars backwards to consider, including the current bar. The
default value wil return the High of the current bar. Any numerical type
variable can be used instead of the number.

Example (VB.NET):
Me.Data.GetLowest(Price.Low, 10)

The function returns the lowest price of the 10 latest bars of the main data series (Data1).

We create an AvSimple type object from OnInitCalculate.

Me.avsimpledata = New AvSimple(Me.Data)

So that

Fast guide for the user · Functions and properties VBA

Me.avsimpledata.GetLowest(Price.Close, 100)

It returns the lowest price of the moving average of the last 100 bars.

GetLowestBar

Description:
Returns the distance in bars of the lowest value of the last n bars (included the current bar) of a determined
source object. The function is included in every class of type source, such as a data series or an indicator.

The distance in bars will be calculated regarding the current bar. As a result, if the lowest price is in the current
bar, the returned value will be 0. If it is in the 15th bar backwards, the returned value will be 15, and so forth
and so on.

Syntax:
Me.Identifier.GetLowestBar (Type.Price, Length)

Parameters:

Name Default Description

Identifier Data
Source identifier. Any data series (high, low, closes indicators …). If there is more
than 1 data source inserted in the same window, they will be noted as Data1,
Data2, Data3, etc.

Tprice PriceClose

Field of the bar to which we want to refer. To do so, we must indicate in this field
the enumerator of the Types.Price enumeration:
 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume
If this function is calculated using an indicator as data source, we will use as
parameter in TPrice the value PriceClose, that refers to the data series of the
identifier. If we indicate PriceHigh or any other, we still get the same value as
return.

Length 2
Number of bars backwards to consider including the current bar. The standard
value 2 will return 0 or 1 (depending on the Low). Any numerical variable can be
used instead of a number.

Example (VB.NET):
Me.Data.GetLowestBar(Price.High, 20)

The function returns the number of bars (backwards), where the lowest high of the latest 20 bars of the main
data series is produced (Data1).

Fast guide for the user · Functions and properties VBA

GetMarketPosition

Description:
This function is used to know, while the strategy is being calculated, which is our position in the market, long,
short or flat. This function is very useful if we are working with stop or limit orders as we do not know when
they have been filled.

The values that can be returned by this function are the following:

 If there are opened positions (long), it returns 1.

 If there are opened positions (short), it returns -1.

 If there is no opened position, it returns 0.

Syntax:
GetMarketPosition (EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of trades backwards, by default we are using the current position.

Example (VB.NET):
If (Me.GetMarketPosition(0) = 1) Then

 Me.ExitLong(TradeType.AtStop, 1, Me.GetEntryPrice() - 20)

 End If

If the function returns 1, then we send a protection stop for long positions.

GetMaxContracts

Description:
This function is used to know the máximum amount of contratcts (long or short) negotiated within a single
position.

Syntax:
GetMaxContracts (EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards, by default we are using the current position.

Example (VB.NET):
If (Me.GetMarketPosition(0) = 1) Then

 If (Me.CurrentContracts() = Me.GetMaxContracts()) Then

 If (Me.Data.Close() > Me.GetEntryPrice() + 100) Then

 Me.ExitLong(TradeType.AtMarket, Me.CurrentContracts() / 2)

 End If

Fast guide for the user · Functions and properties VBA

 End If

 Me.ExitLong(TradeType.AtStop, Me.CurrentContracts(), Me.GetEntryPrice() - 20)

 End If

If we are opened (long), we pretend to reach a partial aim with half of all contracts. For this purpose, we check
if CurrentContracts is equal to GetMaxContracts. In this case, we check the possible partial close. If the value
CurrentContracts is lower, it means that we have already done the partial close and, therefore, we do not
access to this part of the code.

GetMaxEntries

Description:
This function is used to know the maximum amount of different entries within a single position. A position can
have different entries according to the label established in the order and the orders matching modality.

Syntax:
GetMaxEntries (EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards, by default we are using the current position.

Example (VB.NET):
Me.GetMaxEntries(5) The function returns the highest number of entries 5 trades backwards.

GetNthHighest

Description:
This function is used to obtain the highest value of the last n bars and with a certain order of a specific data
source. The function is included in every class of type source, such as a data series or an indicator.

Syntax:
Me.Identifier.GetNthHighest (Nth, TPrice, Length)

Parameters:

Name Default Description

Nth 1

This is the ordinal representing the value that we are willing to obtain. If Nth is
worth 1, we will obtain the first highest value of the last n bars of the series. If
Nth is worth 2, we will obtain the second highest value of the series and so forth
and so on.

TPrice PriceClose

Field of the bar to which we are willing to refer. To do so we must indicate in this
field any of the following values:

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

Fast guide for the user · Functions and properties VBA

If we calculate this function with an indicator as data source, we will pass as
parameter in TPrice the value PriceClose, that refers to the close of the indicator
data series. If we had indicated PriceHigh or any other, it will still return the same
value.

Length 50 Number of bars backwards to be considered.

Example (VB.NET):
Dim lasthigh As Double = Me.Data.GetNthHighest(1, Price.High, 100)

 Dim prelasthigh As Double = Me.Data.GetNthHighest(2, Price.High, 100)

 If (lasthigh > prelasthigh + 20) Then

 Me.Sell(TradeType.AtMarket, 1)

 End If

We open a short position if the greater high is at least 20 points over the penultimate greater high of the last
100 bars.

GetNthLowest

Description:
This function is used to obtain the lowest value of the last n bars and with a certain order of a specific data
source. The function is included in every class of type source, such as a data series or an indicator.

Syntax:
Me.Identifier.GetNthLowest(Nth, TPrice, Length)

Parameters:

Name Default Description

Nth 1

This is the ordinal representing the value that we are willing to obtain. If Nth is
worth 1, we will obtain the first lowest value of the last n bars of the series. If Nth
is worth 2, we will obtain the second lowest value of the series and so forth and
so on.

TPrice PriceClose

Field of the bar to which we are willing to refer. To do so, we must indicate in this
field any of the following values:

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

If we calculate this function with an indicator as data source, we will pass as
parameter in TPrice the value PriceClose, that refers to the close of the indicator
data series. If we had indicated PriceHigh or any other, it will still return the same
value.

Length 50 Number of bars backwards to be considered.

Example (VB.NET):
Dim lastlow As Double = Me.Data.GetNthLowest(1, Price.Low, 100)

Fast guide for the user · Functions and properties VBA

 Dim prelastlow As Double = Me.Data.GetNthLowest(2, Price.Low, 100)

 If (lastlow < prelastlow - 20) Then

 Me.Buy(TradeType.AtMarket, 1)

 End If

We open a long position if the smaller low is at least 20 points under the penultimate smaller low of the last
100 bars.

GetOrderCount

Description:
Returns the amount of active orders given in a single bar of an object of strategy type.

Therefore, it is necessary to declare first an object of strategy type.

Syntax:
Me.Strategy.GetOrderCount(BarsAgo)

Parameters:

Name Default Description

BarsA
go

0
Bar from which we are willing to extract the amount of orders. The default
value refers to the current bar.

Example (VB.NET):

Assuming we declare an object of type DEFSYS (Default System):

 Dim defsysdata As DEFSYS

Imagine that the object defsysdata to which we want to refer to in the current bar sends to the market the
following orders:

- An order to change the position in to short as the strategy is long

- A profit exit order

- A stop loss order

We can assign to a variable previously defined the value returned by this function:

Dim ordersnum As Integer = Me.defsysdata.GetOrderCount(0)

The function returns the value 3 in the current bar as this is the number of active orders on it.

GetOrderDate

Description:
This function returns the data ascribed to the nth active order of a strategy given in a certain bar.

Therefore, it is necessary to declare first an object of strategy type.

Syntax:

Fast guide for the user · Functions and properties VBA

Me.Strategy.GetOrderDate(Identifier, BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo

0
Bar from which we are willing to extract the order. The default value refers to
the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):
Assuming we declare an object of type DEFSYS (Default System):

 Dim defsysdata As DEFSYS

Following the example used in the previous function .GetOrderCount, if we only want to know the date of the
latest of the three orders, we will proceed as follows:

Dim lastorderdate As Date =Me.defsysdata.GetOrderDate(0, 2)

The function returns a DD/MM/YYYY date type. Generally, the date returned will be the corresponding to the
current bar (in the case of BarsAgo=0), or to the date of the bar we are referring to (in the case of BarsAgo >0)

The position we are referring to in this case is 2. As indicated in the section Parameters of this function, the
value 0 is ascribed to the first order, the value 1 to the second and so forth and so on.

GetOrderLabel

Description:
This function returns the label assigned to the nth active order of a strategy given in a certain bar.

Therefore, it is necessary to declare first an object of strategy type.

Syntax:
Me.Strategy.GetOrderLabel(BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the label. The default value refers to
the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Fast guide for the user · Functions and properties VBA

Example (VB.NET):
Assuming we are the userx and we have created the strategy MyStrategy, at some point, this strategy
proceeds as follows:

1) As entry it has sent a Buy order labelled as “Buy_1”

2) And it prepares 3 new orders:

a. Me.ExitLong(TradeType.Atlimit 1, GetEntryPrice + 50, “Compra_1”)

b. Me.ExitLong(TradeType.Atstop, 1, GetEntryPrice - 20, “Compra_1”)

c. Me.Sell(TradeType.Atstop, 1, .Low – 100, “Venta_1”)

On this basis, we have a second strategy in which we declare an object of userx_MyStrategy type:

Dim mystrdata As userx_MyStrategy

Within the method OnCalculateBar, we indicate the following:

Dim label As String = Me.mystrdata.GetOrderLabel(0, 1)

In label, we will obtain “Buy_1”, which is the label assignated to the second order of MyStrategy.

GetOrderPrice

Description:
This function returns the price of the nth active order of a strategy given in a certain bar.

Therefore, it is necessary to declare first an object of strategy type.

Syntax:
Me.Strategy.GetOrderPrice(BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the label. The default value refers to
the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):
By keep going with the example used for the function .GetOrderCount, if, from the three orders in the current
bar, we are willing to know the price of the first of them, we can define a Double type variable, to which we
will assign the value returned by the function .GetOrderPrice:

Dim Price as Double

Price = .GetOrderPrice(My SystemData, 0, 0)

Assuming we declare an object of type DEFSYS (Default System):

Fast guide for the user · Functions and properties VBA

 Dim defsysdata As DEFSYS

Imagine that the object defsysdata to which we want to refer to in the current bar sends to the market the
following orders:

- An order to change the position in to short as the strategy is long

- A profit exit order

- A stop loss order

We can assign to a variable previously defined the value returned by this function:

Dim price as Double= Me.defsysdata.GetOrderPrice(0, 0)

The function will return the price of the first from the three sent orders in the current bar.

GetOrderSide

Description:
This function returns the position (long or short) of the nth active order of a strategy given in a certain bar.

Therefore, it is necessary to declare first an object of strategy type.

The value returned by the function will be of OrderSide type. The values it can take are the following:

 OrderSide.Buy

 OrderSide.Sell

Syntax:
Me.Strategy.GetOrderside(BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the symbol of the associated value. The
default value refers to the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):
Assuming we declare an object of type ADXBANDSYS02:

Dim adxbdsysdata As ADXBANDSYS02

Now we want to send a long order when the strategy sends a new buy order, but 10 points from the buy
price:

 If (Me.adxbdsysdata.GetOrderSide(0, 0) = OrderSide.Buy) Then

 Me.Buy(TradeType.AtStop, 1, Me.adxbdsysdata.GetOrderPrice(0, 0) + 10)

 End If

Fast guide for the user · Functions and properties VBA

GetOrderSymbolCode

Description:
Returns the code (in Visual Chart format, i.e 010072MFXI) of the value associated to the nth order of a strategy
given in a certain bar.

Therefore, it is necessary to declare first an object of strategy type.

Syntax:
Me.Strategy.GetOrderSymbolCode(BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the symbol of the associated value. The
default value refers to the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):

Assuming we declare an object of type DEFSYS (Default System):

 Dim defsysdata As DEFSYS

By its creation we assign as reference source a secondary data series:

Me.defsysdata = New DEFSYS(Me.Data2)

Assuming the secondary data series is from Dax Future Continuous, if we create the following variable:

Dim symbol as String =Me.defsysdata.GetOrderSymbolCode(0,0)

The function will turn “010015DX”, which is the Visual Chart code for the Dax Future Continuous.

GetOrderType

Description:
This function returns the type of order (stop, limit, at close) of the nth active order of a strategy given in a
certain bar.

Syntax:
Me.Strategy.GetOrderType(BarsAgo, NumberOrder)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the type of order. The default value
refers to the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):

Assuming we declare an object of type DEFSYS (Default System):

 Dim defsysdata As DEFSYS

We are willing to know the type of a certain order of this strategy sent in the previous bar. For this purpose,
we create a variable of type Type.TradeType and we assign to it the value returned by the function
GetOrderType:

 Dim type As TradeType = Me.defsysdata.GetOrderType(1, 0)

The variable will store a value of type Type.AtMarket .

GetOrderVolume

Description:
This fucntion returns the amont of contracts /shares of the nth active order of a strategy given in a certain bar.

Syntax:
Me.Strategy.GetOrderVolume(BarsAgo, NumberOrder)

Parameters:

Name Default Description

BarsAgo 0
Bar from which we are willing to extract the type of order. The default value
refers to the current bar.

Number
Order

0
Number of reference order ascribed to the order from which we are willing to
obtain the information. The default value refers to the first active order in a
certain bar.

Example (VB.NET):

Assuming we declare an object of type DEFSYS (Default System):

 Dim defsysdata As DEFSYS

We are willing to know the contract volume of the second order in the current bar. For this purpose we
define a variable and we assign to it the value returned by the function.

Fast guide for the user · Functions and properties VBA

Dim volorder As Long = Me.defsysdata.GetOrderVolume(0,0)
Volorder will store the contract number associated to the current order.

GetPivotDow

Description:
This function is used to obtain the value of a pivot. A pivot is a peak in the quote, in this case we could consider
it as a support.

Syntax:
Me.Identifier.GetPivotDown(Occur, TPrice, LeftCount, RightCount, Length)

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards we are willing
to obtain. If Occur is worth 1, we will be obtaining the first pivot from the current
bar, if it is worth 2 , the second one and so forth and so on.

TPrice PriceClose

Field of the series from which we are willing to obtain the pivot.

PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

If we calculate this function on an indicator we will pass as parameter in TPrice
the value PriceClose, that refers to the close of the data series of the identifier. If
we had indicated PriceHigh or any other value if will not make any change as it
will always return the same value.

LeftCount - Number of bars in the left side of the pivot.

RightCount - Number of bars in the right side of the pivot.

Length 50 Number of bars backwards to be considered while searching for the pivot.

Example (VB.NET):
Me.Data.GetPivotDown(1, Price.Low, 2,4, 50)

The function will search in the latest 50 bars before the current one, the value of the closer pivot (calculated
on the lows), finding in the 2 bars on the left of the pivot and the 4 bars on the right, the value of the low
superior to this one.

GetPivotUp

Description:
This function is used to obtain the value of a pivot. A pivot is a peak in the quote, in this case we could consider
it as a resistance.

Syntax:
Me.Identifier.GetPivotUp(Occur, TPrice, LeftCount, RightCount, Length)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards we are willing
to obtain. If Occur is worth 1, we will be obtaining the first pivot from the current
bar, if it is worth 2, the second one and so forth and so on.

TPrice PriceClose

Field of the series from which we are willing to obtain the pivot.

PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

If we calculate this function on an indicator we will pass as parameter in TPrice
the value PriceClose, that refers to the close of the data series of the identifier. If
we had indicated PriceHigh or any other value if will not make any change as it
will always return the same value.

LeftCount - Number of bars in the left side of the pivot.

RightCount - Number of bars in the right side of the pivot.

Length 50 Number of bars backwards to be considered while searching for the pivot.

Example (VB.NET):

Me.Data.GetPivotUp(1 , Price.High, 2,4, 50)

The function will search in the latest 50 bars before the current one, the value of the closer pivot (calculated
on the highs), finding in the 2 bars on the left of the pivot and the 4 bars on the right, the value of the high
lower to this one.

GetPositionProfit

Description:

This function is used to know the value (monetary) of the profit obtained in a position. This function considers
the amount of contracts/stocks bought or sold.

The value returned will be the difference between the close of the last bar and the entry point (taking into
account the operation type), multiplied by the number of contracts sold. The total penalty applied to the
strategy will be deducted from this result.

If this value is positive, the function will show a profit and if it is negative, it will show a lost.

If the parameter EntryAgo is 0, the function will be applied to the current trade. So that:

 If there is no opened position at this moment, then the returned value will be 0.

 If there is an opened position, it will return the profit obtained until the present time, that is to say,
taking the last bar as exit point.

Fast guide for the user · Functions and properties VBA

If the parameer EntryAgo is 1, the function will return the profit of the last ended trade.

Syntax:
GetPositionProfit(EntryAgo)

Parameters:

Name Default Description

EntryAgo 0 Number of positions backwards. The default value indicates the current position.

Example (VB.NET):
We want to take as profit for the current trade the lost of the last trade, in case of a lost.

 If (Me.GetMarketPosition() = 1) Then

 Dim ptsprofit As Double = (Me.GetPositionProfit(1) /
Me.Data.GetSymbolInfo(SymbolInfo.PointValue))

 If (ptsprofit < 0) Then

 Me.ExitLong(TradeType.AtLimit, 1, Me.GetEntryPrice() + Math.Abs(ptsprofit))

 End If

 End If

The profit is divided by the value per point in order to obtain the value in points instead of the monetary value.

GetPrice

Description:
This function is used to know the price of a field of a bar belonging to a series.

Syntax:
Me.Identifier.GetPrice(TPrice, BarsAgo)

Parameters:

Name Default Description

TPrice PriceClose

Field of the bar from which we want to obtain the value.

PriceHigh: Equivalent to the High
PriceLow: Equivalent to the Low
PriceOpen: Equivalent to the Open
PriceClose: Equivalent to the Close
PriceVolume: Equivalent to the Volume

BarsAgo 0 Number of bars backwards.

Example (VB.NET):
Me.Data.GetPrice(PriceHigh, 22) Returns the field High of 22 bars backwards belonging to Data1.

Fast guide for the user · Functions and properties VBA

GetStkLength

Description:
This function returns the total amount of values given for a certain type of statistical data.

Syntax:
GetStkLength (Statistic)

Parameters:

Name Default Description

Statistic -
Enables to select the statistical data from which we are willing to extract the

value. This parameter belongs to type Types.StatisticValue.

Example (VB.NET):
Inside a strategy, we want to know, at a certain stage, the length of the drawdown, in fact, how many trades
have been calculated. We will proceed as follows:

Dim length_dd As Double = Me.GetStkLength(StatisticValue.Drawdown)

Length_dd will return the amount of trades taken by the strategy to call the function and that have been used
to calculate the drawdown.

GetStkValue

Description:
This function returns the nth value of a certain statistical figure. The returned value can be defined in points, in
monetary value or in percentage (default definition).

Syntax:
GetStkValue(Statistic, Index)

Parameters:

Name Default Description

Statistic -
Enables to select the statistical data from which we are willing to extract the
value. This parameter belongs to type Types.StatisticValue.

Index -
Nth position from which we are willing to obtain the statistical figure. Each
position refers to a trade of the strategy.

About index parameter:

If we consider the position 0 as the value of the statistical figure at the present time, each increase of the
position will mean a greater distance. In this way, the value of the statistical figure at position 1 refers to
the statistical figure at the time of the close of the penultimate trade, while position 2 refers to the
statistical figure at the time of the close of the third-to-last trade, and so on.

Example (VB.NET):

The percentage net profit of a strategy at a certain stage is 0.823%, so that if we declare the following variable:

Fast guide for the user · Functions and properties VBA

Dim current_net As Double = Me.GetStkValue(StatisticValue.NetProfit, 0)

The current net value will be 0.823.

The last closed trade of said strategy obtained a result of -225€, that in percentage terms means a lost of -
0.088%. In this way, if we declare the following variable:

Dim previous_net As Double = Me.GetStkValue(StatisticValue.NetProfit, 1)

The previous net value will be 0.911, that is to say, the percentage net profit before closing the last trade.

GetStkValues

Description:
This function returns the total group of values for a certain statistical data.

Syntax:
GetStkValues(Statistic, aValues)

Parameters:

Name Default Description

Statistic -
Enables to select the statistical data from which we are willing to extract the value.
This parameter belongs to type Types.StatisticValue.

aValues

- Buffer where the values returned for the selected statistical data are stocked.

Example (VB.NET):
Dim amount As Long = 0
Dim values() As Double = Nothing

amount = Me.GetStkValues(StatisticValue.Drawdown, values)

In this case, it returns the array values for all the figures and in amount the number of values written in the
array.

GetSymbolIdentifier-GSI
Description:
This function is used only when we need to obtain and use data from a symbol which is not on the screen
while inserting the corresponding strategy as, is this was the case, it would be easier to use the corresponding
Datas.

This function is also useful to refer to the values of a symbol determined within a Macro, as in this case the
historical data are not available on the screen.

In order to create a data source and to obtain its identifier we must previously have declared a DataIdentifier
type variable.

Fast guide for the user · Functions and properties VBA

Once the variable has been defined, we will assign to it the value of the function GetSymbolIdentifier in order
to obtain the identifier of the symbol. The identifier of the symbol must be obtained from the procedure
OnInitCalculate.

Later on, the obtained identifier can be used with any VBA function requiring a Data (data series from which
the different functions are calculated).

Syntax:
GetSymbolIdentifier(Symbol, Compresion, Cr, FromDate, ToFinalDate)

We can also use its short name GSI:

GSI(Symbol, Compresion, Cr, FromDate, ToFinalDate)

Parameters:

Name Default Description

Symbol - Code of the required symbol.

Compresion - Compression unit (2, 5 ,10...).

Cr -

Compression type; there are four different types available:
CrMinutes: To obtain a minutes chart.
CrDays: To obtain a daily chart.
CrWeeks: To obtain a weekly chart.
CrMonth: To obtain a monthly chart.

FromDate - Start date of the data source with the required identifier.

ToFinalDate -

This is the end date of the historical data we are going to load. This data must
always be superior to the current date so we recommend using always
01/01/2037 to make sure that the data of the required source are always
updated.

Example (VB.NET):
Dim dailydate As DataIdentifier = Me.GetSymbolIdentifier(Me.Data.GetSymbolInfo(SymbolInfo.Code), 1,
CompresionRange.Dias, "01/01/1997", "01/01/2037")

We declare an object of DataIdentifier type and we assign to it the daily data series of the same titel as the
main source.

GetSymbolInfo
Description:
This function is used to obtain a series of characteristics from a certain symbol and not only for a certain bar.
These values remain constant all over the chart and are determined by the type of value Types.SymbolInfo,
that can take the following values:

SbiBarCompresion Compression used for bars.

SbiCode Code of the asset.

SbiCompresion Compression being used (ticks, minutes, days,…).

Fast guide for the user · Functions and properties VBA

Synta
x:

Me.Identifier.GetSymbolInfo(SymbolInfo)

Parameters:

Name Default Description

Info SbiName Type of SymbolInfo that we are willing to check.

Example (VB.NET):
We declare a global variable of logical type, that will tell us if we are in an intraday compression.

 Dim isintraday As Boolean

From the method OnInitCalculate we give value to the variable regarding the type of information
SymbolInfo.Compresion:

If Me.Data.GetSymbolInfo(SymbolInfo.Compresion) = CompresionRange.Minutos Or
Me.Data.GetSymbolInfo(SymbolInfo.Compresion) = CompresionRange.Ticks Then

 isintraday = True

 Else

 isintraday = False

 End If

That is to say, if we have a minutes or ticks compression, we are in an intraday chart, otherwise, we are not.

GetSymbolInfoEx

Description:
This property returns an object of type IElementSymbolInfo regarding the data series assigned to the time the
type is being created. This property is used in order to avoid having to do more than one call to obtain all
SymbolInfo figures.

Once the object has been created, we can use its functions in order to access to the data SymbolInfo. The
functions that can be used of said type are the following:

SbiFirstSessionEnd Closing time for the session of the asset (format HHMM).

SbiFirstSession Start Start time for the session of the asset (format HHMM).

SbiMarket Market the product belongs to.

SbiMinMov Minimum movement (tick) of the product.

SbiName Name of the product.

SbiNumDec Number of decimals considered in the scale of the product.

SbiPath All the symbols registered in our computer are located in the folder
VisualChart\RealServer\Data. With this figure we can extract the path
from the folder DATA of a certain asset.

SbiPointValue Value per point of the product.

SbiTimeD if Time difference of the product on which it is applied (in seconds).

SbiVendor Specifies the vendor of the asset.

Fast guide for the user · Functions and properties VBA

Syntax:
Dim x As IElementSymbolInfo = Me.GetSymbolInfoEx(DataIdentifier, [Day])

Parameters:

Name Default Description

Symbol Data
Data source from wich we are willing to extract the information. If not specified we wil
considered the chart where the strategy is inserted as data.

Day -
Optional parameter. Day of the week from which we want to obtain the information.
Generally it will not be declared.

Example (VB.NET):

We create an object of type IElementSymbolInfo:

 Dim ielements As IElementSymbolInfo = Me.GetSymbolInfoEx(Me.Data2.DataSeriesId)

The reference data source is the second source associated to the alias Data2. As we require a DataIdentifier in
the parameter Symbol, we specify that the reference is the property DataSeriesId of Data2.

Next, we indicate that in case that the source with alias Data2 is the Dax future continuous, then it must send
a warning message:

If ielements.GetCode = "010015DX" Then

 MsgBox("Is using the dax future cotinuous as Data2.")

End If

GetBarCompresion Returns the compression used for bars.

GetCode Returns the titel code.

GetCompresion Returns the compression type that is being used (ticks, minutes, days,…)

GetFirstSessionEnd Returns the closing time for the session of the asset (format HHMM).

GetFirstSession Start Returns the start time for the session of the asset (format HHMM).

GetMarket Returns the market the product belongs to.

GetMinMov Returns the minimum movement (pips) which the product can give.

GetName Returns the name of the product.

GetNumDec Returns the decimal number considered in the scale used by the product.

GetPath Returns all symbols registered in our computer, that are located under
RealServer\Data from VisualChart. With this figure we can extract the path from the
folder DATA of a certain asset.

GetPointValue Returns the point value of the product.

GetTimeD if Returns the time difference of the product on which it is applied (in seconds).

GetVendor Returns the vendor of the asset.

Fast guide for the user · Functions and properties VBA

GetSystemIdentifier-GSYSI

Description:
This function enables to obtain internally the information of a certain strategy. This way, we can extract the
information from this strategy without having to calculate it once and once again.

Syntax:
GetSystemIdentifier(Name, ParentDataIdentifier, ParamArray)

We can also use the short method GSYSI.

GSYSI(Name, ParentDataIdentifier, ParamArray)

Parameters:

Name Default Description

Name - Code of the strategy from which we are willing to extract the information.

ParentDataIdentifier Data Data source from which we would be loading the strategy.

ParamArray - Collection of entry parameters demanded by the strategy (optional).

Example (VB.NET):
We can assign to a DataIdentifier type variable the information of a certain strategy and use it later on with
other functions, for example, .GetOrderCount, .GetOrderLabel, etc.

Assuming we have a strategy called Mysystem.
Dim mysystemdata As DataIdentifier = 0

mysystemdata =GetSystemIdentifier(MySystem, Data, ContractsNumber, Target, Losses, StartHour,
EndHour)

From OnCalculateBar we extract the number of the strategy orders at a certain stage:

Dim ordernum As Long =Me.GetOrderCount(Me.mysystemdata)

Visual Chart 6 novelties:

Visual Chart 6 wants to get the most of the project design using object-oriented programming languages.

As a result, we will see that we can create objects of types associated to the public strategies as well as to the
private strategies (as long as we have access to them).

So, we can define an object of ADXBANDSYS, STOCHCROSS or PVBREAK type. Every strategy adds a new class
of the same type. In this way, it is lighter to add strategies to a project because it is not necessary to use the
method GetSystemIdentifier.

Use of profit line.

Objects of strategy type are also considered data sources. In these cases, the series is made up of the profit
curve in points of the concrete strategy. This ability enables to add to the project any indicator calculated
on the profit curve of a strategy.

Example (VB.NET):

Fast guide for the user · Functions and properties VBA

We want to apply the 20-period RSI to the profit curve of the Stochastic Cross strategy and acts regarding
said RSI. For this purpose, we declare an object of STOCHCROSS type and another of RSI type.

 Dim stoccrdata As STOCHCROSS

 Dim rsidata As RSI

From OnInitCalculate, we create both objects:

Me.stoccrdata = New STOCHCROSS(Me.Data, 14, 6, 3, 74, 23, 0.2, 0.6, 0, 0, 1)

Me.rsidata = New RSI(Me.stoccrdata, 20)

Finally from OnCalculateBar we act regarding the RSI:

 If (Me.rsidata.value() > 30 And Me.rsidata.value(1) <= 30) then

 Me.Buy(TradeType.AtMarket)

End If

GetSwingHigh

Description:
This function is used to obtain the value of a pivot. A pivot is a peak in the quote, in this case we could consider
it as a resistance.

The difference regarding the GetPivotUp is that, in this case, the number of bars to the rigth and to the left is
the same and they are defined by the Strength parameter.

The function returns the value null if it does not find a bullish pivot within the specific requirements.

Syntax:
Me.Identifier.GetSwinHigh(Occur, Tprice, Strength, Length)

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards we are willing
to obtain. If Occur is worth 1, we will obtain the first pivot from the current bar, if
it is worth 2, the second one and so forth and so on.

TPrice PriceClose

Data series from which we are willing to obtain the pivot.

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

If this function is calculated on an indicator we will pass as parameter in TPrice
the value PriceClose, that refers to the close of the indicator data series. If we
had indicated PriceHigh or any other price source, it will still return the same
value.

Strength 2 Number of bars to consider in both sides of the pivot.

Length 50 Number of bars backwards to be considered while searching for the pivot.

Fast guide for the user · Functions and properties VBA

This function is very useful as it helps us to find support or resistances. We can say that there is an up pivot
when a value in a certain data series is superior to a number of previous and subsequent values specified in
the parameter Strength.

Example (VB.NET):
Me.Data.GetSwingHigh(1, Price.High, 2, 50)

In this case the function will search in the 50 bars preceeding the current one, the value of the closest pivot
(calculated within the highs), being on the 2 bars on each side of the pivot, the value of the high lower than
this pivot.

GetSwingHighBar

Description:
This function returns the distance to a bullish pivot. A pivot is a peak in the quote, in this case we could
consider it as a resistance.

The function returns the value null, if it does not find a bullish pivot within the specific requirements.

Syntax:
Me.Identifier.GetSwinHighBar(Occur, Tprice, Strength, Length)

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards that we are
willing to find. If Occur is worth 1, we will be obtaining the first pivot from the
current bar. If it is worth two, the second one and so forth and so.

TPrice PriceClose

Data series from which we are willing to obtain the pivot.

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

If this function is calculated on an indicator we will pass as parameter in TPrice
the value PriceClose, that refers to the close of the indicator data series. If we
had indicated PriceHigh or any other price source, it will still return the same
value.

Strength 5 Number of bars to consider in both sides of the pivot.

Length 50
Number of bars backwards to be considered while searching for the pivot. If this
number of bars is overcome, the function will return the value null.

Example (VB.NET):
Me.Data.GetSwingHighBar(1, Price.High, 2, 50)

In this case, the function will search over the 50 bars preceeding the current one the distance to the closest

Fast guide for the user · Functions and properties VBA

pivot (calculated on the highs), being on the 2 bars on each side of the pivot, the value of the high inferior to it.
If this pivot is 5 bars away from the current bar, where we are using the function, it will return 5. In the
following bar it will return 6 and so forth and so on until a new pivot is found or the distance overcomes the
high 50 bars.

GetSwingLow

Description:
This function is used to obtain the value of a bearish pivot. A pivot is a peak in the quote, in this case we will be
able to consider it as a support as we are talking about an inverted peak.

The difference regarding the GetPivotDown is that in this case the bars number to the left and right of the
pivot is the same and they are defined by the parameter Strength.

If no bearish pivot within the specific requirements is found the function will return 0.

Syntax:
Me.Identifier.GetSwingLow(Occur, Tprice, Strength, Length)

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards that we are
willing to find. If Occur is worth 1, we will be obtaining the first pivot from the
current bar, if it is worth two, the second one and so forth and so on.

TPrice PriceClose

Field of the bar from which we are willing to obtain the pivot

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

If this function is calculated on an indicator we will pass as parameter in TPrice
the value PriceClose, that refers to the close of the indicator data series. If we
had indicated PriceHigh or any other price source it will still return the same
value.

Strength 2 Number of bars to consider in both sides of the pivot.

Length 50 Number of bars backwards to consider while searching for the pivot.

This function is very useful as it helps us to find support or resistances. We can say that there is a down pivot
when a value in a certain data series is inferior or equal to a number of previous and subsequent values
specified in the parameter Strength.

Example (VB.NET):
Me.Data.GetSwingLow(1, Price.Low, 2, 50)
In this case, the function will search throughout the 50 bars preceeding the current one, the value of the
closest pivot (calculated on the lows), being on the 2 bars on each side of the pivot, the value of the low
superior to this low.

Fast guide for the user · Functions and properties VBA

GetSwingLowBar

Description:
This function returns the length, in number of bars, since the last bearish pivot occurred. A bearish pivot is a
low in the quote, in this case we could consider it as a support.

If no bearish pivot within the specific requirements is found, the function will return 0.

Syntax:
Me.Identifier.GetSwingLowBar(Occur, Tprice, Strength, Length)

Parameters:

Name Default Description

Occur 1
Numerical value representing the number of the pivot backwards that we are
willing to find. If Occur is worth 1, we will be obtaining the first pivot from the
current bar, if it is worth two, the second one and so forth and so on.

TPrice PriceClose

Field of the bar from which we are willing to obtain the pivot:

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open
 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

If this function is calculated on an indicator we will pass as parameter in TPrice
the value PriceClose that refers to the close of the indicator data series. If we had
indicated PriceHigh or any other price source, it will still return the same value.

Strength 2 Number of bars to consider in both sides of the pivot.

Length 50 Number of bars backwards to be considered while searching for the pivot. If this
number of bars is overcome, the function will return the value null.

Example (VB.NET):
Me.Data.GetSwingLow(1, Price.Low, 2, 50)

In this case, the function will search over the 50 bars preceeding the current one the value of the closest pivot
(calculated on the lows). The lowest value superior to the pivot bar one must occur in the two bars before and
after the pivot one. If the pivot is found 5 bars before the current one on which the function is used, it will
return a 5, is 6 bars then a 6 and so forth and so on until a new pivot is found.

GetTrueHigh

Description:
Returns the highest price between the high of a bar and the close of the previous bar.

Syntax:
Me.Identifier.GetTrueHigh (BarsAgo)

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

BarsAgo 10 Number of bars backwards that will serve as reference to apply the calculation.

Example (VB.NET):
We want to take as reference for a long entry with a stop order the highest value between the high of the
penultimate bar and the close ot the third last bar:

Me.Buy(TradeType.AtStop, 1, Me.Data.GetTrueHigh (1))

GetTrueLow

Description:
Returns the lowest price between the low of a bar and the close of the previous bar.

Syntax:
Me.Identifier.GetTrueLow (BarsAgo)

Parameters:

Name Default Description

BarsAgo 10 Number of bars backwards that will serve as reference to apply the calculation.

Example (VB.NET):
Me.Data.GetTrueLow (5)

Compares in the historical figures of the series Data1, the low of a bar with the close of the previous one,
indicating the lower of both of them (taking as reference to start the calculation 5 bars backwards).

GetTrueRange

Description:
This function returns the difference between GetTrueHigh and GetTrueLow for a data series.

Syntax:
Me.Identifier.GetTrueRange (BarsAgo)

Parameters:

Name Default Description

BarsAgo 10 Bar number on which the function is applied.

Example (VB.NET):

Returns the difference between the value returned by the function GetTrueHigh and GetTrueLow and the
second bar backwards of the Data series.

Fast guide for the user · Functions and properties VBA

GetTrueRangeCustom

Description:
This function compares the current highest and lowest values with a price interval established by parameters.
If the price moves within this interval, the returned value will be the range or difference between the highest
value and the lowest value. If the price exceeds the highest value, the returned value will be the range or
difference between the high given by the asset and the lowest interval value. In the same way, if the lowest
value is exceeded, the returned value will be the range or difference between the interval high and the lowest
value given by the asset. As a result, we will quickly know if the underlying is outside the interval and in which
proportion if the value returned by the function ovecomes the default interval.

Syntax:
Me.DataIdentifier.GetTrueRangeCustom (BarsAgo, High, Low)

Parameters:

Name Default Description

BarsAgo 10 Number of the reference bar

High - Highest value

Low - Lowest value

Example (VB.NET):

Assuming we create an indicator as follows:

Dim range As Double = Me.Data.GetTrueRangeCustom(0, 9000, 5000)

Me.SetIndicatorValue(difference)

We insert the indicator on the Dax Future Continuous.

The value returned by the indicator from 2010 until 2014 will be 4000 points, while the returned value in
2014 exceeds 4000 points and it is widely exceeded since 2015 (until the range 7000 is reached, wich is the
difference between the DAX highs in 2015 and the lowest value 5000).

GetVolatility

Description:
This function returns the volatility between the current bar and the Nth bar backwards in terms of difference
in points.

Syntax:
Me.Identifier.GetVolatility (Tprice, Length)

Parameters:

Name Default Description

TPrice PriceClose

Field of the bar to which we want to refer. To do so, we must indicate in this field
the enumerator of the Types.Price enumeration:

 PriceHigh: Equivalent to the High
 PriceLow: Equivalent to the Low
 PriceOpen: Equivalent to the Open

Fast guide for the user · Functions and properties VBA

 PriceClose: Equivalent to the Close
 PriceVolume: Equivalent to the Volume

Length 1 Distance in relation to the current bar to calculate the volatility.

Example (VB.NET):
Me.GetVolatility(Price.Low, 5)

In this case, the function will return the difference between the low of the current bar and the low 5 bars
backwards (from the data series Data 1).

GetWndBackGroundColor

Description:
This function returns the background color of an indicator window.

Syntax:
GetWndBackGrounColor ()

Parameters:

Na
me

Default Description

- - -

GrossLoss

Description:
Returns the value of the gross losses for the negative trades accumulated by our strategy until the current bar
(on which the calculations are being run). To obtain it, we consider that the last opened trade concludes in the
current bar.

Syntax:
Me.GrossLoss(SttRepresentation.Porcentual)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
Me.GrossLoss(SttRepresentation.Porcentual) Will return the loss percentage (gross) obtained by the
strategy.

GrossProfit

Fast guide for the user · Functions and properties VBA

Description:
This function returns the value of the gross profits obtained by the strategy in the positive trades until the
current bar (bar on which the calculations are being run). To obtain it, we will consider that the last opened
trade concludes in the current bar.

Syntax:
GrossProfit(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
Me.GrossProfit(SttRepresentation.Puntos)

Will return in points the gross profit obtained by the strategy.

High

Description:
This function returns the value of the bar high of a specific data series.

Syntax:
Me.Identifier.High(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0

Number of bars backwardss. The default value refers to the current bar.
In this parameter we can use any numerical value contained in a variable or enter
the value directly.
If can also be specified as function replacing the numerical value.

Example (VB.NET):
Me.Data.High(4) Will return the highest value of the las 4 bars (from the data source Data1).

IsFirstDayBar

Description:

This function returns true or false based on whether the current bar is the first bar of each session or not
(respectively).

Syntax:
Me.IsFirstDayBar()

Fast guide for the user · Functions and properties VBA

Parameters:

Name Default Description

- -

Example (VB.NET):
We want an entry based on the opening price of each session +/- a filter. To do this, we create a variable in
which we store the session opening price:

 Private entryprice As Double

From the method OnCalculateBar() we indicate to update the variable each time the property IsFirstDayBar is
true:

 If (Me.IsFirstDayBar) Then

 Me.entryprice = Me.Data.Open()

 End If

IsLastDayBar

Description:

This function returns true or false based on whether the current bar is the last bar of each session or not
(respectively).

Syntax:
Me.IsLastDayBar()

Parameters:

Name Default Description

- -

Example (VB.NET):
We want that the strategy checks the entry rules at all bars except the last bar of each session, since we want
to avoid a pending order overnight:

 If (Me.IsLastDayBar = False) Then

 If (Me.rsidata.Value() < 70 And Me.rsidata.Value(1) >= 70) Then

 Me.Buy(TradeType.AtMarket)

 End If

 End If

LargestLosingTrade

Description:
This function returns the result of the worst operation. This value will change while new bars are generated by
and its value will depend on the bar on which the property is called.

Fast guide for the user · Functions and properties VBA

Syntax:
LargestLosingTrade(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
If we want to know, at a certain stage, the result of the worst operation (in points) done by our strategy, we
could define a variable:

Dim largestlosingtrade As Double = 0

An assign to it the value returned by the property:

largestlosingtrade =Me.LargestLosingTrade(SttRepresentation.ByPoints)

LargestWinningTrade

Description:
This function returns the result of the best trade made. This value will change while new bars are generated by
and it value will depend on the bar on which the property is being called.

Syntax:
LargestWinningTrade(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

We are willing to know, at a certain stage, the result of the best trade in percentage made by our strategy, so
we could define a variable:

Dim largestwinningtrade As Double = 0

And assign to it the value returned by the property:
largestwinningtrade = Me.LargestWinningsTrade(SttRepresentation.Porcentual)

Fast guide for the user · Functions and properties VBA

Lc_Index

Description:

This function returns the ratio Profits in long positions /Profits in short positions. This value will change while
new bars are generated by, and its value will depend on the bar on which this property is called.

Syntax:
Lc_Index(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
We are willing to know, at a certain stage, the ratio Profits in long positions /Profits in short positions
(percentage) of our strategy. We could define a variable:

Dim lc_index As Double = 0

And assign to it the value returned by the property:

lc_index = Me.Lc_Index(SttRepresentation.Porcentual)

LimitOrder

Description:
This property enables to obtain the existing amount of orders in the bid and in the ask for certain price levels
in a certain bar.

Caution. It only returns results in real time as there are not historical data available for the bid and ask
positions.

Syntax:
LimitOrder(Level, Side, BarsAgo, Identifier)

Parameters:

Nam
e

Default Description

Level 1 Indicates the nth bid and ask position whose amount we are willing to know.

Side osBuy
Order position. Figure of Type.OrderSide type, that can be:

 OrderSide.Buy (buy)

Fast guide for the user · Functions and properties VBA

 OrderSide.Sell (sell)

Bars
Ago

0
Position of the bar we want to consult, although it must be a bar generated during
the real time.

Ident
ifier

Data Data series from which we want to obtain the information.

Example (VB.NET):
Me.LimitOrder(4, OrderSide.Sell, 0, Data1)
This way, we obtain the amount of titles/contracts offered in the forth sell position of the data source Data1.

LimitPrice

Description:
This property enables to obtain the price of the active orders in a bid and in the ask for a certain position and
in a certain bar.

Caution. It only returns results in real time as they are not historical data available for the bid and ask
positions.

Syntax:
LimitePrice(Level, Side, BarsAgo, Identifier)

Parameters:

Name Default Description

Level 1 Indicates the nth bid and ask position whose price we are willing to know.

Side osBuy

Order position. Figure of Type.OrderSide type, that can be:

 OrderSide.Buy (buy)

 OrderSide.Sell (sell)

BarsAgo 0
Position of the bar we want to consult, although it must be a bar generated
during the real time.

Identifier Data Data from which we are extracting the information.

Example (VB.NET):
Me.LimitOrder(4, osSell, 0, Data1) Returns the price offered in the forth sell positions of Data1.

LimitVol
Description:
The property LimitVol enables to obtain the total volume of the active orders in the bid and the ask, for a
certain position and for a certain bar.

This property only returns results in real time as there is not historical data kept for the bid and ask positions.

Syntax:
LimitVol(Level, Side, BarsAgo, Identifier)

Parameters:

Fast guide for the user · Functions and properties VBA

Name Default Description

Level 1 Indicates the nth bid and ask position whose volume we are willing to know.

Side osBuy

Order position. Figure of Type.OrderSide type, that can be:

 OrderSide.Buy (buy)

 OrderSide.Sell (sell)

BarsAgo 0
Position of the bar we want to consult, although it must be a bar generated
during the real time.

Identifier Data Data from which we are willing to extract the information.

Example (VB.NET):
Me.LimitVol(2, OrderSide.Buy, 0, Data)

We obtain this way the volume of titles/contracts offered in the second buying position of the data source
Data.

Low

Description:
This function returns the lowest value of a bar for a certain data series.

Syntax:
Me.Identifier.Low(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0

Number of bars backwards, the default value refers to the current bar.
This parameter can be used with any numerical value contained in a variable and
also by entering its value.
It can also be specified as function replacing the numerical value.

Example (VB.NET):
Me.Data2.Low(0) Returns the low of the current bar (from the data source Data2).

MarketFilledOrders

Description:
This function enables the access to the filled orders (user´s orders) from the own strategy. As a result, it will
only make sense if the broker connection (in real or simulation) has been established.

Sintaxis:
MarketFilledOrders(Label, BarsAgo, Side)

Parameters:

Name Default Description

Fast guide for the user · Functions and properties VBA

Label - Label associated to the order we want to consult.

BarsAgo 0 Number of bars backwards. The default value refers to the current bar.

Side -
Position of the order we want to consult. (0 long position and 1 short
position).

Example (VB.NET):
Assuming that the strategy “A” has a long opened position and set 2 orders at the same time (a target profit
and a stop at market).

Once the trading of the strategy has been activated, we can know through the code which order has been
filled by doing as follows:

Dim MKFO() As MktFilledOrder

MKFO = Me.MarketFilledOrders("A", 0, osSell) We consult if sell orders with label “A” have been filled in
the current bar.

n = UBound(MKFO)

If Err.Number = 0 Then If MKFO is not empty, it means that at least an order was filled.

 If UBound(MKFO) <> -1 Then

 PriceExitOrder = MKFO(0).Price We take the price returned by the function.
 End If

End If

According to the value of PreisExitOrder we can see if the stop or the target was filled.

MinutesToTime

Description:
This function is used to change minutes in standard time.

Syntax:
MinutesToTime(Minutes)

Parameters:

Name Default Description

Minutes - Time in numerical format

Example (VB.NET):
Me.MinutesToTime(300) Will return 5 (300 minutes are worthing 5 hours).

Fast guide for the user · Functions and properties VBA

NetProfit

Description:
This function is used to obtain the value of the strategy´s net profit until the current bar (bar on which the
calculation is being made). To obtain the total profit we will consider that the last opened trade concludes in
the close of the current bar.

Syntax:
NetProfit(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
Me.NetProfit(SttRepresentation.ByPoints) Returns in points the net profit obtained by the strategy.

NumberOfLines

Description:
This function returns the number of lines of the indicator on which it is applied. The indicator must have had
previously assigned values to these lines, so that the value returned by the function includes them (as the
function only returns the values of the current lines).

Syntax:

NumberOfLines

Parameters:

Name Default Description

- - -

Example (VB.NET):
Supposing that we have created an indicator callled MyIndicator that runs the following calculation:

Value1 = Me.Data.High + Me.Data.Low + Me.Data.Close / 3
Value2 = Me.Data.High + Me.Data.Low / 2
Value3 = Me.Data.Open + Me.Data.Close + Me.Data.Close(1) / 3

And then we paint:

Me.SetIndicatorValue(Value1, 1)
Me.SetIndicatorValue(Value2, 2)
Me.SetIndicatorValue(Value3, 3)

If, inside our code, we use the function:

Fast guide for the user · Functions and properties VBA

Dim nlines As Integer =Me.NumberOfLines

Nlines will be equal to 3, that is the number of painted lines.

NumberOfLosingTrades

Description:
This function returns the number of losing trades made by our strategy until the current bar. This value will
change while new bars are generated and its value will depend on the bar on which the property is called.

Syntax:
NumberOfLosingTrades

Parameters:

Name Default Description

- - -

Example (VB.NET):

Imagine that we are willing to know, in a certain bar, the number of accumulated losing trades. We could
define a variable:

Dim losing As Long = Me.NumberOfLosingTrades

In this case, it returns the number of losing trades accumulated until the moment the property is called.

NumberOfTrades

Description:
Returns the number of trades made until that moment. This value will change while new bars are generated
and its value will depend on the bar on which the property is called.

Syntax:
NumberOfTrades

Parameters:

Name Default Description

- - -

Example (VB.NET):

Supposing that we are willing to define, in a certain bar, the number of accumulated trades. We could define a
variable:

Dim numberoftrades As Long =Me.NumberOfTrades

Fast guide for the user · Functions and properties VBA

Returns the number of trades accumulated until the moment the property is called.

NumberOfWinningTrades

Description:
This function returns the number of winning trades until that moment. This value will change while new bars
are generated and its value will depend on the bar on which the property is called.

Syntax:
NumberOfWinningTrades

Parameters:

Name Default Description

- - -

Example (VB.NET):

Supposing that we are willing to know, in a certain bar, the number of accumulated winning trades. We could
define a variable:

Dim winning As Long =Me.NumberOfWinningTrades

Returns the accumulated number of winning trades until the moment the property is called.

Open

Description:
This function returns the value of the bar´s open.

Syntax:
Me.Identifier.Open(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0

Number of bars backwards. The default value refers to the current bar. In this
parameter, we can enter a numerical value or indicate a numerical value
contained in a variable.
It can also be specified as a function replacing the numerical value.
This parameter only allows positive values.

Example (VB.NET):
Me.Data.Open(3) Returns the open value three bars backwards from the data source codified as Data1.

Fast guide for the user · Functions and properties VBA

OpenInt

Description:
This function returns the value of the OpenInterest in a bar for a certain data series.

Caution. This function only returns results in case of future contracts, where this information is provided.

Syntax:
Me.future.OpInt(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0
Number of bars backwards. The default value refers to the current bar. It can also
be specified as a function replacing the numerical value.
This parameter only allows positive values.

Example (VB.NET):
Me.Data.OpInt(5)

Returns the OpenInterest 5 bars backwards (from the data series Data).

PaintBar

Description:
By using this option we can paint bars on the chart with the wished values for open, high, low and close.

Syntax:
PaintBar(Open, High, Low, Close, Color, [LineNumber], [Width], [nBars])

Parameters:

Name Default Description

Open - Enables to use a function or variable.

High - Enables to use a function or variable.

Low - Enables to use a function or variable.

Close - Enables to use a function or variable.

Color - Color used to paint the bars by using the data type System.Drawing.Color.

LineNu
mber

-

Specifies the order number for painting study in studies with different paint
orders (i.e., if we want to include within a study a paint bar order (.PaintBar) and
a paint line order (.PaintSeries), we must set in the first order line number 0 and
in the second order line number 1.

Width 1 Width of the bar to be painted.

nBars
Ago

- Number of bars backwards. The value 0 refers to the current bar.

Fast guide for the user · Functions and properties VBA

Example (VB.NET):

We want to create a chart based on averages. For this purpose we declare the following four objects and
the parameter Period in a new study:

 <Parameter(Name:="Period", DefaultValue:=15, MinValue:=2, MaxValue:=100, Step:=1)>

 Private period As Integer

 Dim opendata As AvSimple

 Dim closedata As AvSimple

 Dim highdata As AvSimple

 Dim lowdata As AvSimple

Next, we create them assigning each of them a different price field:

 Me.opendata = New AvSimple(Me.Data, Me.period, Price.Open)

 Me.closedata = New AvSimple(Me.Data, Me.period, Price.Close)

 Me.highdata = New AvSimple(Me.Data, Me.period, Price.High)

 Me.lowdata = New AvSimple(Me.Data, Me.period, Price.Low)

Finally, from the method OnCalculateBar we use the method PaintBar:

 If (Me.closedata.Value() > Me.opendata.Value()) Then

 Me.PaintBar(Me.opendata.Value(), Me.highdata.Value(), Me.lowdata.Value(),
Me.closedata.Value(), Color.Blue)

 Else

Me.PaintBar(Me.opendata.Value(), Me.highdata.Value(), Me.lowdata.Value(),
Me.closedata.Value(), Color.Pink)

 End If

Paints the bars in blue or rose depending on the trend.

PaintCandlestick

Description:
By using this option we can paint candles with the wished values for open, high, low and close.

Syntax:
PaintCandlestick(Open, High, Low, Close, Color, [LineNumber], [Width], [nBars])

Parameters:

Name Default Description

Open - Enables to use a function or variable.

High - Enables to use a function or variable.

Fast guide for the user · Functions and properties VBA

Low - Enables to use a function or variable.

Close - Enables to use a function or variable.

Color - Color used to paint the candles by using the data type System.Drawing.Color.

LineNu
mber

-

Specifies the order number for painting study in studies with different paint
orders (i.e., if we want to include within a study a paint bar order (.PaintBar) and
a paint line order (.PaintSeries), we must set in the first order line number 0 and
in the second order line number 1.

Width 1 Width of the bar to be painted.

nBars
Ago

- Number of bars backwards. The value 0 refers to the current bar.

Example (VB.NET):
We want to paint candles using the methods GetTrueHigh and GetTrueLow, so that the high of each candle
will be the value returned by the function GetTrueHigh and the low by the function GetTrueLow:

 If (Me.Data.Close() > Me.Data.Open()) Then

Me.PaintCandlestick(Me.Data.Open, Me.Data.GetTrueHigh, Me.Data.GetTrueLow, Me.Data.Close,
Color.WhiteSmoke)

 Else

Me.PaintCandlestick(Me.Data.Open, Me.Data.GetTrueHigh, Me.Data.GetTrueLow, Me.Data.Close,
Color.DarkGray)

 End If

As a result, the bullish candles will be painted in light grey and the bearish candles in dark grey.

PaintMaxMin

Description:
This function is similar to PaintBar and PaintCandlestick. The difference is that, in the current function, we can
only establish values for the high and the low of the bar we are willing to paint.

Syntax:
PaintMaxMin(Top, Bottom, Color, [LineNumber], [Width], [nBars])

Parameters:

Name Default Description

Top - High of the bar we are willing to paint. Enables to use a function or variable.

Botto
m

- Low of the bar we are willing to paint. Enables to use a function or variable.

Color - Color used to paint the bars by using the data type System.Drawing.Color.

LineNu
mber

-
Specifies the order number for painting study in studies with different paint
orders (i.e., if we want to include within a study a paint bar order (.PaintBar) and
a paint line order (.PaintSeries), we must set in the first order line number 0 and

Fast guide for the user · Functions and properties VBA

in the second order line number 1.

Width 1 Width used to paint.

nBars
Ago

- Number of bars backwards. The value 0 refers to the current bar.

Example (VB.NET):
Me.PaintMaxMin(Me.Data.Low(), Me.Data.Low(), Color.Blue, 0, 8, 0)

Paints the low of the bar with a circle (width 8) in blue color.

PaintSeries

Description:
This function is used to paint data lines in a window. This task can also be run by creating an indicator, but if
we wanted to mix lines with options of painting bars or painting figures, we could decide to create a study
including these two types. We must remember that the studies can not be used in other kind of projects as
strategies, indicators, etc. Consequently, if we want to use the data line later on, we should use an indicator.

Syntax:
PaintSeries(Price, Color,[LineNumber], [Width], [nBars])

Parameters:

Name Default Description

Price -
In this parameter we indicate the required value for the line in the current bar.
Any numerical value or a numerical type variable is accepted in this parameter.

Color - Color used to paint the bars by using the data type System.Drawing.Color.

LineNu
mber

-

Specifies the order number for painting study in studies with different paint
orders (i.e., if we want to include within a study a paint bar order (.PaintBar) and
a paint line order (.PaintSeries), we must set in the first order line number 0 and
in the second order line number 1.

Width 1 Width used to paint the candlestick.

nBars
Ago

- Number of bars backwards. The value 0 refers to the current bar.

Example (VB.NET):
PaintSeries((Me.Data.High + Me.Data.Low) / 2, Color.Red, 0, 1, 0)

In this case the function paints a red colored line representing the average point of the bar.

PercentProfitable

Description:
This function returns the reliability ratio. This value will change while new bar are generated and its value will
depend on the bar on which the property is called.

Fast guide for the user · Functions and properties VBA

Syntax:
PercentProfitable

Parameters:

Na
me

Default Description

- - -

Example (VB.NET):

We want to know, at a certain stage, the reliability ratio of our strategy. To do so, we shall previously define a
variable:

Dim reliability As Double = 0

At a certain stage, we will assign to this variable the value of the property .PercentProfitable:

Reliability = Me.PercentProfitable

ProfitFactor

Description:
This function returns the Profit factor. This value will change while new bars are generated and its value will
depend on the bar on which this property is called.

Syntax:
ProfitFactor(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

We want to know, at a certain moment, the profit factor (percentage) of our strategy. To do so, we shall
previously define a variable:

Dim profitf As Double = 0

At a certain stage, we will assign to this variable the value of this function:

Profitf =Me.ProfitFactor(SttRepresentation.Porcentual)

Fast guide for the user · Functions and properties VBA

PRR

Description:
This function returns the ration Adjusted Profit Factor. This value will change while new bars are generated
and will depend on the bar on which the property is called.

Syntax:
PRR(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

If we want to know, at a certain stage, the Adjusted profit factor (in points) of our strategy, we must first
define a variable:

Dim adprofitf As Double = 0

We assign to it, at a certain stage, the value of this function:

Adprofitf = Me.PRR(SttRepresentation.ByPoints)

RegressionAngle

Description:
This function returns the angle formed by the horizontal line and the regression line formed by the closing
prices located between StartBar and EndBar.

Syntax:
Me.Identifier.RegressionAngle(StarBar, EndBar, Data)

Parameters:

Name Default Description

StarBar - Start bar of the regression line.

EndBar - End bar of the regression line.

 RegressionSlope

Fast guide for the user · Functions and properties VBA

Description:
This function returns the value of the slope of the regression line formed by the closing prices situated
between StartBar and EndBar.

Syntax:
Me.Identifier.RegressionSlope(StarBar, EndBar)

Parameters:

Name Default Description

StarBar - Start bar of the regression line.

EndBar - End bar of the regression line.

ReleaseDataIdentifier - RDI

Description:
This function enables to free a DataIdentifier previously called via the method GetSymbolIdentifier.

Syntax:
ReleaseDataIdentifier(Identifier)

The short mode RDI can also be used.
RDI(Identifier)

Parameters:

Name Default Description

Identifier Data Data to be freed.

Example (VB.NET):
First, we must create a data identifier that we are going to use to extract the minimum movement of the
contract FDAXU5 (Dax Furture September contract-2015)

Dim auxdata As DataIdentifer = Me.GetSymbolIdentifier("010015FDAXU5", 1, compresionRange.Dias,
CDate("01/09/2015"), CDate("01/01/2036"))

Then we extract the minimum movement that we are willing to use:

Dim pip As Double = Me.auxdata.GetSymbolInfo(SymbolInfo.MinMov)

Finally, as the new data is consuming ressources on the memory, we freed it as we are no longer going to use
it. To do so, we use the function ReleaseDataIdentifier.

Me.ReleaseDataIdentifier (auxdata)

Sell

Description:

This function is used to sell future contracts or to sell stocks at credit. It is important to know that the function
is used to open short positions, not only to close the long positions. Therefore, if we want to cancel a long
without opening a new short position, we must use the function ExitLong.

Fast guide for the user · Functions and properties VBA

Syntax:
Sell(TradeType, Contracts, Price, Label)

Parameters:

Name Default Description

Type AtClose
Type of order we are willing to launch (TraderType.AtClose,
TraderType.AtMarket, TraderType.AtLimit and TraderType.AtStop).

Contracts 1
Number of contracts/stocks. The numerical specifications on contracts can be
replaced by variables or by any other function previously defined.

Price -
Sell price. This parameter must only be indicated for TraderType.AtStop and
TraderType.AtLimit orders. The value can be expressed via a number, a variable
or a function, or a mix of both.

Label - Order label in text format.

Example (VB.NET):
If (Me.GetMarketPosition() <> -1) then

 Me.Sell(TradeType.AtStop, 1, Me.Data.Close()-10, "V1")

End If

In this case the function sends an AtStop sell order (one contract), the stop price set at the close of the bar
minus 10 points and the label “V1”.

SetBackGroundColor

Description:
This function is used to paint the background of the window, for a certain bar, in the indicated color.

Syntax:
SetBackGroundColor (BarsAgo, Color)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Color -
Color on which the background is to be painted for the indicated bar (BarsAgo). It
uses the type System.Drawing.Color.

Example (VB.NET):
Me.SetBackGroundColor(1, Color.Red) Will paint the background of the window (in the previous bar) in
red.

SetBarColor

Description:
This function assigns a certain color to the indicated bar of a certain indicator line.

Fast guide for the user · Functions and properties VBA

Syntax:
SetBarColor (BarsAgo, Line, Color)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the data line to which the bar on which the property will be established
belongs.

Color -
Color with which the indicated bar must be painted. It uses the type
System.Drawing.Color.

Example (VB.NET):
Me.SetBarColor(0,1, Color.Red) Will paint in red the current bar of line 1.

SetBarProperties

Description:
This function assigns to the indicated bar, of a certain line of the indicator, the color, width and type of line
and also the representation used in the rest of the parameters.

Syntax:
SetBarProperties (BarsAgo, Line, Color, Width, Style, Representation)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line -
Identifies the data line to which the bar on which the property is established
belongs.

Color - Color to paint the indicated bar. It uses the type System.Drawing.Color.

Width - Indicates the width to be applied to the bar (1,2,..).

Style -

Style used for the representation:
LineStyle.Solid continuous line

LineStyle.Dash non-continuous line

LineStyle.Dot dotted line

LineStyle.Dashdot dotted line with point

LineStyle.Dashdotdot dotted line with 2 points

Representation -

Type of representation to be used:
IndicatorRepresentation.Bars bars

IndicatorRepresentation.Candlestic candlesticks

IndicatorRepresentation.DottedLine dotted line

IndicatorRepresentation.FilledHistogram filled histogram

IndicatorRepresentation.Histogram histogram

Fast guide for the user · Functions and properties VBA

IndicatorRepresentation.Lineal lineal

IndicatorRepresentation.Parabolic parabolic

IndicatorRepresentation.Volume volumen

Example (VB.NET):
Me.SetBarProperties(0,1, Color.Red,2,LineStyle.Solid,IndicatorRepresentation.Lineal)

In this case the function will paint in red the line 1 of the current bar (in format of continuous line and
thickness 2).

Visual Chart 6 novelties:

As Visual Chart 6 enables to use the .NET Framework capabilities, it is possible to create custom attributes
in order to provide additional information about the elements of the programme. Since each indicator´s
project consists of a class creation, we can include several attributes to the class at issue. Among them, the
attribute OutputSeriesProperties. This attribute allows to define the line style of the indicator alternative to
the function SetBarProperties.

Syntax:

<OutputSeriesProperties(Line:=NumLine, Color:=Chart.Colors, ChartingStyle:=Chart.ChartStyle,
Width:=WidthLine)>

The attribute OutputSeriesProperties will be defined under the attribute Indicator.

SetBarRepresentation

Description:
This function sets the type of representation for a certain bar.

Syntax:
SetBarRepresentation(BarsAgo, Line, Representation)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the data line to which the bar on which the property is established
belongs.

Representation -
Type of representation to be used, IndicatorRepresentation (the different types
of representation can be checked with the function SetBarProperties).

Example (VB.NET):
Me.SetBarRepresentation(0,1, IndicatorRepresentation.Lineal)

The current bar of the indicator´s line number one will be represented in linear format.

Fast guide for the user · Functions and properties VBA

SetBarStyle

Description:
This function sets the style of a certain bar.

Syntax:
SetBarStyle(BarsAgo, Line, LineStyle)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the data line to which the bar on which the property is established
belongs.

Representation -
Type of representation to be used, LineStyle (the different types of
representation can be checked with the function SetBarProperties).

Example (VB.NET):
Me.SetBarStyle(0,1,LineStyle.Solid)

The current bar of the indicator´s line number one will be represented in continous line format.

SetBarWidth

Description:
Assigns to the indicated bar, of a certain line, the required width.

Syntax:
SetBarWidth(BarsAgo, Line, Width)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the data line to which the bar on which the property is established
belongs.

Width - Thickness of the bar to be represented in.

Example (VB.NET):
Me.SetBarWidth(0,1, 2) The current bar of the indicator line number 1 will be represented with thickness 2.

SetHistogramBand

Description:
This function assigns to the indicated bar of a certain data series the value of the histogram band, in fact the
value serving as limit to paint the histogram (if the representation used is the histogram). This function is
strictly associated to the use of the property StartBarRepresentation.

Fast guide for the user · Functions and properties VBA

Syntax:
SetHistogramBand(BarsAgo, Line, BandLine)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line
Identifies the data line to which the bar on which the property is established
belongs.

BandLine - Data line used as reference to draw the histogram.

Example (VB.NET):

Supposing that we use the function .SetBarRepresentation (0,1, IndicatorRepresentation.Histogram). The
indicator will need a reference value to oscillate around in order to generate the histogram.

In this case:

Me.SetIndicatorValue (Me.Data.Close – Me.Data.Close(1),1,0) With line 1 we represent the difference
between closes.

Me.SetIndicatorValue(0,2,0) With line 2 we represent the value 0.

Next, by using the function SetBarRepresentation, we will indicate that line one will be painted with an
histogram as default representation:

Me.SetBarRepresentation (0,1, IndicatorRepresentation.Histogram)

And finally we will indicate the line to oscillate around:

Me.SetHistogramBand (1,2)

This way, line 1 will use as line band (reference line) line 2.

SetIndicatorPos

Description:
Indicates to a certain bar, of a certain line, a certain position.

Syntax:
SetIndicatorPos(BarsAgo, Line, IndicatorPosition)

Parameters:

Name Default Description

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

Line -
Identifies the data line to which the bar on which the property is established
belongs.

IndicatorPosition -
The trend can be of type IndicatorPosition, such as IndicatorPosition.Bull
(bullish), IndicatorPosition.Bear (bearish) or IndicatorPosition.Neutral (flat).

Example (VB.NET):

Fast guide for the user · Functions and properties VBA

Me.SetIndicatorPos(3,2,ipNeutral) Assigns to the bar number three backwards of line number 2 a neutral
position.

SetIndicatorValue

Description:
This function assigns a value of the indicator in a certain bar. A certain trend will be ascribed to this value, if we
specify something in the property IndicatorPosition.

Visual Chart 6 novelties:

If the value of the indicated bar by painting the line x is relative to a previous bar (that is to say, we do not
specify 0 in the property BarsAgo), we must know that this line will be blocked to be used from a strategy. This
is done in order to avoid that strategies rely on indicators that throw the information backwards.

Syntax:
SetIndicatorPos(Value, Line, BarsAgo, IndicatorPosition)

Parameters:

Name Default Description

Value - Numerical value for exit.

Line 1
Identifies the data line to which the bar on which the property is established
belongs.

BarsAgo - Number of bars backwards. The value 0 refers to the current bar.

IndicatorPosition -
The trend can be of type IndicatorPosition, such as IndicatorPosition.Bull
(bullish), IndicatorPosition.Bear (bearish) or IndicatorPosition.Neutral (flat).

Example (VB.NET):

Imagine that we define a numerical variable and we assign to it the value returned by the following
calculation:

Dim buffer3 As Double = Me.Data.High(0) – Me.Data.Low(0) / Me.Data.High(0) * 100

Next, we can use the function SetIndicatorValue to paint on each bar the value calculated for this variable:

If (buffer3 > 50) then
 Me.SetIndicatorValue(buffer3, 1,0,IndicatorPosition.Bull)
Else
 Me.SetIndicatorValue(buffer3, 1,0,IndicatorPosition.Bear)
End If

The difference is that, depending on this value, the indicator will be ascribed a bull or bear trend.

SetLineName

Description:
Assigns a name to the indicated line. This method has not to be specified for each bar, since as long as a line

Fast guide for the user · Functions and properties VBA

has assigned a name, this is valid for all bars. Therefore, we recommend declaring the function SetLineName
from the method OnInitCalculate.

Syntax:
SetLineName(Line, LineName)

Parameters:

Name Default Description

Line -
Identifies the data line to which the bar on which the property is established
belongs.

LineName - The name is ascribed to the corresponding property.

Example (VB.NET):

From the method OnInitCalculate we specify the following:

Me.SetLineName(2, “DT”) Assigns the name “DT” to line 2.

Visual Chart 6 novelties:

As Visual Chart 6 enables to use the .NET Framework capabilities, it is possible to create custom attributes
in order to provide additional information about the elements of the programme. Since each indicator´s
project consists of a class creation, we can include several attributes to the class at issue. Among them, the
attribute OutputSeriesProperties. This attribute allows to define the line name of the indicator alternative
to the function SetLineName.

Syntax:

<OutputSeriesProperties(Name:=LineName)>

The attribute OutputSeriesProperties is defined under the attribute Indicator.

 SetWndBackGroundColor

Description:
Assigns the background color to the window of an indicator.

Syntax:
SetWndBackGrounColor()

Parameters:

Name Default Description

Color -
Value of type System.Drawing.Color to indicate the background color of the
window.

Example (VB.NET):

Fast guide for the user · Functions and properties VBA

Me.SetWndBackgroundColor(Color.Beige) Assigns the beige color to the indicator window.

ShouldTerminated

Description:
This function is used to stop the calculation process of a strategy. ShouldTerminated is a boolean variable,
initialized with the value false, so that, in order to interrupt the calculations we must assign to it the value
True.

This function turns out to be very useful when working with extended historical data and we want to stop the
calculation under certain circumstances.

Syntax:
ShouldTerminated = True/False

Parameters:

Name Default Description

- - -

Example (VB.NET):

If Me.CurrentBar = 1000 And Me.NetProfit < 100 Then
 Me.ShouldTerminate = True
End If

In this case, the calculations will stop when 1000 bars of the calculation have gone by and the net profit is
lower than 100 euros.

Slope

Description:
This function returns the value of the regression line slope, which is formed by the indicated prices between
the bars StartBar and EndBar for a certain data series.

The function Slope returns for each bar the slope value of the regression equation, which associates the prices
with the time variable, so that it can be translated as an indicator of the trend slope.

Syntax:
Me.Identifier.Slope(StarBar, EndBar, StarPrice, EndPrice)

Parameters:

Name Default Description

StarBar - Bar number of the regression line start.

EndBar - Bar number of the regression line end.

StarPrice - Start price of the regression line.

EndPrice - End price of the regression line.

Fast guide for the user · Functions and properties VBA

Example:

We are willing to enter the market each time there is a slope change of the regression line. So if the slope
changes from positive to negative we send a sell order and if it changes from negative to positive we send a
buy order.

First, we extract the line slope of the last 10 bars in the current bar and the same slope in the previous bar:

 Dim slope As Double = Me.avdata.Slope(Bar - 10, Bar, Me.avdata.Value(10), Me.avdata.Value(0))

 Dim slope_ant As Double = Me.avdata.Slope(Bar - 11, Bar - 1, Me.avdata.Value(11),
Me.avdata.Value(1))

Next, we use this information to define the trading rules:

 If (slope > 0 And slope_ant <= 0) Then

Me.Buy(TradeType.AtMarket)

 ElseIf (slope < 0 And slope_ant >= 0) Then

Me.Sell(TradeType.AtMarket)

 End If

StandardDeviation

Description:
Returns the standard deviation.

Syntax:
StandardDeviation(Show As SttRepresentation)

Parameters:

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):

Dim DE as double = Me.StandardDeviation(SttRepresentation.ByPoints)

When we use this property, the value of the standard deviation in points will be ascribed to the variable DE.

StarBar

Description:
Enables to specify the start bar for the strategy calculation.

Syntax:
StarBar = (Number of bars)

Parameters:

Fast guide for the user · Functions and properties VBA

Name Default Description

- - -

Example (VB.NET):

Assuming that our strategy trades on the basis of certain support and resistance levels calculated regarding
the last 25 bars.

As we need at least 24 previous bars, we specify that the process must start from bar number 25:

 Public Overrides Sub OnInitCalculate()

 Me.StartBar = 25

 End Sub

Time

Description
Returns the value of the field Time of a certain bar. The time of a bar is given by the end time of the temporary
period resuming the bar. The time of a bar is considered in military format (HHMM), so if the time of a bar is
5:35pm, in Visual Chart it will be considered as the numerical format 17:35h.

Syntax:
Me.Identifier.Time(BarsAgo)

Parameters:

Name Default Description

BarsAgo 0 Number of bars backward. By default it refers to the current bar.

Example (VB.NET):
Me.Data.Time(3) Returns the time in military format (HHMM) from Data1 three bars backwards.

TimeEx

Description
Returs the date of the reference bar in date format (DD/MM/AAAA HH:MM:SS).

Syntax:
Me.Identifier.TimeEx(TickIndex, BarsAgo)

Parameters:

Name Default Description

TickIndex 0
Start parameter, which must be included. For this purpose, we
declare a variable to store the returned value. It only has an effect

Fast guide for the user · Functions and properties VBA

on tick charts.

BarsAgo 0
Bar from which we are willing to extract the date. By default it refers
to the current bar.

TickIndex is a Start parameter. When we are trading with a tick chart, some of them may have the same date.
This parameter is filled by indicating the nth tick position referring to the same date.

Example (VB.NET):

We declare the variable type Long in which the tick number will be stored:

Dim tickindex As Long = 0

The function

Me.Data2.TimeExe(tickindex, 1)

Returns the date (DD/MM/AAAA HH:MM:SS) of the previous bar of the Data2 series.

TimeToMinutes

Description:
Returns the number of minutes passed since 00:00.

Syntax:
TimeToMinutes(Time)

Parameters:

Name Default Description

Time - Time in military format (HHMM)

Example (VB.NET):
Me.TimeToMinutes(1735)

Returns 1055 minutes.

TodayCurrentBar

Description:

Returns the bar number in relation to the total bars number of the session. In other words, it returns the
distance in bars regarding the start bar of the session.

Visual Chart 6 novelties:

If we work with End Of Day strategies, to which we apply schedule filters to determine the trading intervals,
we recommend that the parameters which establish the schedule margins are specified by a bar number. So
instead of specifying InitTime equal to 930 (for example), we will define this parameter as InitBar equal to 2

Fast guide for the user · Functions and properties VBA

(for example). Thanks to the new property TodayCurrentBar, it is very easy to check if the corresponding bar
was reached or not.

Syntax:

TodayCurrentBar()

Parameters:

Name Default Description

- -

Example (VB.NET):
We include in a strategy two parameters in order to limit the trading period per session:

 <Parameter(Name:="InitBar", DefaultValue:=2, MinValue:=1, MaxValue:=20, Step:=1)>

 Private initbar As Integer

 <Parameter(Name:="EndBar", DefaultValue:=40, MinValue:=25, MaxValue:=50, Step:=1)>

 Private endbar As Integer

Then, we specify that only the entry rules within this interval are to be checked:

 If (Me.TodayCurrentBar >= Me.initbar And Me.TodayCurrentBar < Me.endbar) Then

 If (Me.rsidata.Value() < 70 And Me.rsidata.Value(1) >= 70) Then

 Me.Buy(TradeType.AtMarket)

 End If

 End If

TodayHigh

Description:
Returns the highest price within the last session.

Syntax:

TodayHigh()

Parameters:

Name Default Description

- -

Example (VB.NET):

 If GetMarketPosition() = 1 Then

 Me.ExitLong(TradeType.AtLimit, 1, Me.TodayHigh())

 End If

Activates a limit exit order on the basis of the session high.

Fast guide for the user · Functions and properties VBA

TodayLow

Description:
Returns the lowest price within the last session.

Syntax:

TodayLow()

Parameters:

Name Default Descriptrion

- -

Example (VB.NET):

 If GetMarketPosition() = -1 Then

 Me.ExitShort(TradeType.AtLimit, 1, Me.TodayLow())

 End If

Activates a limit exit short order on the basis of the session low.

Volume

Description:
This function returns the value of the volume (negotiated stocks/contracts) in a bar for a certain data series.

Syntax:
Me.Identifier.Volume (BarsAgo)

Parameters:

Name Default Description

BarsAgo 0
Bar number. The default value refers to the current bar. Upon this parameter, we
can indicate any numerical value contained under a variable or even type the
number. It can also be specified as a function replacing the numerical value.

Example (VB.NET):
Me.Data2.Volume(15)

Returns the volume negotiated 15 bars backwards in the data series Data2.

WorstSeries

Description:
This function returns the worst series of losses according to their results.

Syntax:
Worstseries(Show)

Parameters:

Fast guide for the user · Functions and properties VBA

Name Default Description

Show Bypoints

Enables to indicate the format on which the information will show up:

SttRepresentation.ByPoints (points) or SttRepresentation.Porcentual
(percentage).

Example (VB.NET):
Dim worstseries As Double = Me.WorstSeries(SttRepresentation.ByPoints)

Assings to the variable the worst series in points until now.

